Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.737
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5618, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454094

RESUMO

The hazel allergen Cor a 1 is a PR-10 protein, closely related to the major birch pollen allergen Bet v 1. Hazel allergies are caused by cross-reactive IgE antibodies originally directed against Bet v 1. Despite the importance of PR-10 proteins in allergy development, their function and localization in the plant remain largely elusive. Therefore, the presence of Cor a 1 mRNA and proteins was investigated in different tissues, i.e., the female flower, immature and mature nuts, catkins, and pollen. Four yet unknown Cor a 1 isoallergens, i.e., Cor a 1.0501-1.0801, and one new Cor a 1.03 variant were discovered and characterized. Depending on the isoallergen, the occurrence and level of mRNA expression varied in different tissues, suggesting different functions. Interestingly, Cor a 1.04 previously thought to be only present in nuts, was also detected in catkins and pollen. The corresponding Cor a 1 genes were expressed in Escherichia coli. The purified proteins were analysed by CD and NMR spectroscopy. Immunoblots and ELISAs to determine their allergenic potential showed that the new proteins reacted positively with sera from patients allergic to birch, hazel and elder pollen and were recognized as novel isoallergens/variants by the WHO/IUIS Allergen Nomenclature Sub-Committee.


Assuntos
Corylus , Hipersensibilidade , Humanos , Idoso , Alérgenos , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Betulaceae/metabolismo , Betula/metabolismo , RNA Mensageiro , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo
3.
Int Immunopharmacol ; 129: 111607, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38330798

RESUMO

Novel allergen immunotherapy (AIT) approaches necessitate the use of more effective and safe therapeutics, which can be accomplished by employing novel adjuvants for improved innate immune cell activation, as well as hypoallergenic allergen forms. In this study, we investigate the immunomodulatory effects of a chimera rBet v 1a-BanLecwt (rBv1a-BLwt; Cwt) composed of the major birch pollen allergen Bet v 1a and banana lectin (BanLecwt; BLwt) and two novel chimeras, rBv1l-BLH84T (rBet v 1l-BanLecH84T; C1) and rBLH84T-Bv1l (rBanLecH84T-Bet v 1l; C2), both composed of BLH84T and hypoallergenic birch pollen allergen Bv1l in the co-culture model Caco-2/THP-1, and PBMCs from donors with birch pollen allergy. The chimeric molecules rBv1l-BLH84T (C1) and rBLH84T-Bv1l (C2) were created in silico and then produced in E. coli using recombinant DNA technology. Real-time PCR analysis of gene expression following compound treatment in the co-culture model revealed that all three chimeras have the potential to induce the anti-inflammatory cytokine IL-10 gene expression in Caco-2 cells and IFN-γ gene expression in THP-1 cells. Sandwich ELISA revealed that Cwt increased IL-10 secretion and IFN-/IL-4 levels in PBMCs from birch pollen allergic donors, whereas C1 and C2 were less effective. The findings suggest that Cwt should be analyzed further due to its potential benefit in AIT.


Assuntos
Betula , Hipersensibilidade , Humanos , Betula/genética , Células CACO-2 , Interleucina-4/genética , Pólen , Interleucina-10/genética , Técnicas de Cocultura , Regulação para Cima , Escherichia coli/genética , Proteínas de Plantas/genética , Antígenos de Plantas/genética , Alérgenos/genética , Expressão Gênica , Proteínas Recombinantes
4.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191104

RESUMO

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Assuntos
Ambrosia , Hipersensibilidade , Ambrosia/genética , Antígenos de Plantas/genética , Ecossistema , Alérgenos/genética , Alérgenos/química , Pólen/genética , Cromossomos
5.
Front Immunol ; 14: 1291666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077382

RESUMO

Background: Allergens from Fagales trees frequently cause spring allergy in Europe, North America, and some parts of Asia. The definition of the birch homologous group, which includes birch (Bet v), oak (Que a), alder (Aln g), hazel (Cor a), hornbeam (Car b), beech (Fag s), and chestnut (Cas s), is based on high allergen sequence identity and extensive IgE cross-reactivity. Clinical effect was seen during the alder/hazel, birch, and oak pollen seasons after treatment with tree SLIT-tablets containing only birch allergen extract. Here, we characterize T-cell reactivity with respect to epitope specificities and cross-reactivity toward various Bet v 1 family members, (PR-10/group 1 major allergens). This cross-reactivity may be part of the immunological basis of clinical effect or cross-protection when exposed to birch homologous tree species. Method: T-cell lines were generated from 29 birch-allergic individuals through stimulation of peripheral blood mononuclear cells (PBMCs) with birch/Bet v or oak/Que a allergen extracts. T-cell responses to allergen extracts, purified group 1 allergens, and overlapping 20-mer peptides (Bet v 1, Aln g 1, Cor a 1, and Que a 1) were investigated by T-cell proliferation and cytokine production. Cross-reactivity was evaluated based on Pearson's correlations of response strength and further investigated by flow cytometry using tetramer staining for homologous peptide pairs. Results: T-cell reactivity toward extracts and group 1 allergens from across the birch homologous group was observed for birch/Bet v as well as oak/Que a T-cell lines. T-cell lines responded to multiple Bet v 1 homologous peptides from Aln g 1 and Cor a 1 and a subset of Que a 1 peptides. Significant Pearson's correlations between frequently recognized peptides derived from Bet v 1 and the corresponding peptides derived from alder, hazel, and oak strongly supported the T-cell cross-reactivity toward these allergens. Cross-reactivity between birch and birch homologous peptides was confirmed by pMHCII tetramer staining. Conclusion: T cells from birch tree pollen allergic individuals respond to multiple trees within the birch homologous group in accordance with the level of sequence homology between Bet v 1 family members, (PR-10 allergens) from these allergen sources, confirming the basis for clinical cross-protection.


Assuntos
Hipersensibilidade , Árvores , Humanos , Linfócitos T , Leucócitos Mononucleares , Antígenos de Plantas , Pólen , Alérgenos , Peptídeos/análise , Betula
6.
Int Immunopharmacol ; 125(Pt A): 111160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948987

RESUMO

BACKGROUND: Platanus acerifolia is recognized as a source of allergenic pollen worldwide. Currently, five Platanus acerifolia pollen allergens belonging to different protein families have been identified, in which profilin and enolase were characterized by our group recently. Besides, we also screened and identified a novel allergen candidate as triosephosphate isomerase, which was different from already known types of pollen allergens. However, the role of this novel allergen group in Platanus acerifolia pollen allergy was unclear. Therefore, we further investigated the allergenicity and clarify its clinical relevance in this study. METHODS: The natural triosephosphate isomerase from Platanus acerifolia pollen was purified by three steps of chromatography and identified by mass spectrometry. The cDNA sequence of this protein was matched from in-house transcripts based on internal peptide sequences, which was further confirmed by PCR cloning. The recombinant triosephosphate isomerase was expressed and purified from E. coli. Allergenicity analysis of this protein was carried out by enzyme linked immunosorbent assay, immunoblot, and basophil activation test. RESULTS: A novel allergen group belonging to triosephosphate isomerase was firstly identified in Platanus acerifolia pollen and named as Pla a 7. The cDNA of Pla a 7 contained an open reading frame of 762 bp encoding 253 amino acids. The natural Pla a 7 displayed 41.4% IgE reactivity with the patients' sera by ELISA, in which the absorbance value showed correlation to the serum sIgE against Platanus acerifolia pollen extract. Inhibition of IgE-binding to pollen extracts reached 26%-94% in different Pla a 7-positive sera. The recombinant Pla a 7 exhibited weaker IgE-reactivity in ELISA than its natural form, but showed comparable activity in immunoblot. The allergenicity was further confirmed by basophil activation test. CONCLUSIONS: Triosephosphate isomerase (Pla a 7) was first recognized as pollen allergen in Platanus acerifolia pollen, which is a completely different type of pollen allergen from those previously reported. This finding is essential to enrich information on allergen components and pave the way for molecular diagnosis or treatment strategies for Platanus acerifolia pollen allergy.


Assuntos
Rinite Alérgica Sazonal , Humanos , Rinite Alérgica Sazonal/diagnóstico , Escherichia coli/genética , DNA Complementar , Triose-Fosfato Isomerase/genética , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/química , Pólen , Imunoglobulina E
7.
Allergy ; 78(12): 3136-3153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37701941

RESUMO

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Assuntos
Hipersensibilidade Alimentar , Pólen , Ratos , Animais , Humanos , Epitopos , Antígenos de Plantas , Alérgenos , Imunoglobulina G , Imunoglobulina E , Peptídeos , Proteínas de Plantas , Proteínas Recombinantes
8.
Biomolecules ; 13(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509186

RESUMO

The term allergy was coined in 1906 by the Austrian scientist and pediatrician Clemens Freiherr von Pirquet. In 1976, Dietrich Kraft became the head of the Allergy and Immunology Research Group at the Department of General and Experimental Pathology of the University of Vienna. In 1983, Kraft proposed to replace natural extracts used in allergy diagnostic tests and vaccines with recombinant allergen molecules and persuaded Michael Breitenbach to contribute his expertise in molecular cloning as one of the mentors of this project. Thus, the foundation for the Vienna School of Molecular Allergology was laid. With the recruitment of Heimo Breiteneder as a young molecular biology researcher, the work began in earnest, resulting in the publication of the cloning of the first plant allergen Bet v 1 in 1989. Bet v 1 has become the subject of a very large number of basic scientific as well as clinical studies. Bet v 1 is also the founding member of the large Bet v 1-like superfamily of proteins with members-based on the ancient conserved Bet v 1 fold-being present in all three domains of life, i.e., archaea, bacteria and eukaryotes. This suggests that the Bet v 1 fold most likely already existed in the last universal common ancestor. The biological function of this protein was probably related to lipid binding. However, during evolution, a functional diversity within the Bet v 1-like superfamily was established. The superfamily comprises 25 families, one of which is the Bet v 1 family, which in turn is composed of 11 subfamilies. One of these, the PR-10-like subfamily of proteins, contains almost all of the Bet v 1 homologous allergens from pollen and plant foods. Structural and functional comparisons of Bet v 1 and its non-allergenic homologs of the superfamily will pave the way for a deeper understanding of the allergic sensitization process.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Betula , Proteínas de Plantas/química , Antígenos de Plantas/genética , Pólen/genética
9.
Int Immunol ; 35(9): 447-458, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37418020

RESUMO

Cry j 1 is a major allergen present in Japanese cedar (Cryptomeria japonica) pollens. Peptides with the core sequence of KVTVAFNQF from Cry j 1 ('pCj1') bind to HLA-DP5 and activate Th2 cells. In this study, we noticed that Ser and Lys at positions -2 and -3, respectively, in the N-terminal flanking (NF) region to pCj1 are conserved well in HLA-DP5-binding allergen peptides. A competitive binding assay showed that the double mutation of Ser(-2) and Lys(-3) to Glu [S(P-2)E/K(P-3)E] in a 13-residue Cry j 1 peptide (NF-pCj1) decreased its affinity for HLA-DP5 by about 2-fold. Similarly, this double mutation reduced, by about 2-fold, the amount of NF-pCj1 presented on the surface of mouse antigen-presenting dendritic cell line 1 (mDC1) cells stably expressing HLA-DP5. We established NF-pCj1-specific and HLA-DP5-restricted CD4+ T-cell clones from HLA-DP5 positive cedar pollinosis (CP) patients, and analyzed their IL-2 production due to the activation of mouse TG40 cells expressing the cloned T-cell receptor by the NF-pCj1-presenting mDC1 cells. The T-cell activation was actually decreased by the S(P-2)E/K(P-3)E mutation, corresponding to the reduction in the peptide presentation by this mutation. In contrast, the affinity of NF-pCj1·HLA-DP5 for the T-cell receptor was not affected by the S(P-2)E/K(P-3)E mutation, as analyzed by surface plasmon resonance. Considering the positional and side-chain differences of these NF residues from previously reported T-cell activating sequences, the mechanisms of enhanced T-cell activation by Ser(-2) and Lys(-3) of NF-pCj1 may be novel.


Assuntos
Alérgenos , Cryptomeria , Animais , Camundongos , Cryptomeria/química , Antígenos de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/análise , Proteínas de Plantas/química , Pólen , Peptídeos , Receptores de Antígenos de Linfócitos T
10.
Artigo em Inglês | MEDLINE | ID: mdl-37297649

RESUMO

During and after the pollen season, an increase in food-triggered allergic symptoms has been observed in pollen-food syndrome patients, possibly due to seasonal boosting of pollen-IgE levels. It has been suggested that consumption of birch-pollen-related foods plays a role in seasonal allergenic inflammation. However, whether this increased pollen sensitization during the pollen season can also affect the allergenicity of allergens that are non-cross-reactive with birch pollen remains in question. This study presents the case of a patient with soy allergy and pollinosis, who experiences worsening of gastrointestinal (GI) symptoms during the birch pollen season even though the eliciting food factor does not cross-react with birch pollen allergens and their homologs (e.g., Bet v 1 and Gly m 4). The results showed a notable increase in sIgE for Gly m 4 (3.3 fold) and Bet v 1 (2.6 fold) during the birch pollen season compared to outside the birch pollen season, while Gly m 5 and Gly m 6 showed only a slight increase (1.5 fold). The basophil activation test (BAT) showed that in this patient Gly m 5 and Gly m 6 are clinically relevant soy allergens, which correlates with the reported clinical symptoms to processed soy. Moreover, the BAT against raw soy shows an increase in basophil activation during the birch pollen season and a negative basophil activation result outside the birch pollen season. Thus, the worsening of GI symptoms could possibly be due to an increase in IgE receptors, an over-reactive immune system, and/or significant intestinal allergic inflammation. This case highlights the importance of including allergens that do not cross-react with birch pollen and using a functional assay such as the BAT to evaluate clinical relevance when assessing birch pollen seasonal influence on soy allergenicity.


Assuntos
Hipersensibilidade Alimentar , Rinite Alérgica Sazonal , Humanos , Alérgenos , Betula , Imunoglobulina E , Pólen , Inflamação , Reações Cruzadas , Antígenos de Plantas
11.
Food Res Int ; 169: 112932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254358

RESUMO

The increasing exposure of the population to Cannabis sativa has revealed allergies to different parts of the plant, among which hemp seed. Nonetheless, the major hemp seed allergens remain to be identified. Several known families of allergens are present in hemp seed, including notably seed storage proteins. We therefore aimed to investigate the potential allergenicity of the hemp seed storage proteins and their potential cross-reactivity to different seeds and nuts. For this, we extracted hemp seed proteins sequentially using buffers with increasing levels of salinity (H2O, T2 and T3) to yield extracts differentially enriched in storage proteins. We used these extracts to perform immunoblots and ELISAs using sera of patients either sensitized to hemp seeds or sensitized/allergic to other seeds and nuts. Immunoblots and proteomics analyses identified vicilins and edestins as potential hemp seed allergens. Moreover, ELISA analyses revealed a correlation between sensitization to hazelnut and the hemp seed T3 extract (enriched in storage proteins). The possible cross-reactivity between hazelnut and hemp seed proteins was further strengthened by the results from inhibition ELISAs: the incubation of sera from hazelnut-sensitized individuals with increasing concentrations of the T3 extract inhibited serum IgE binding to the hazelnut extract by about 25-30%. Our study thus identifies vicilins and edestins as potential hemp seed allergens and highlights a possible cross-reactivity with hazelnut. The clinical relevance of this cross-reactivity between hemp seed and hazelnut needs to be further investigated in hazelnut-allergic individuals.


Assuntos
Cannabis , Corylus , Hipersensibilidade a Noz , Humanos , Alérgenos , Antígenos de Plantas , Imunoglobulina E , Proteínas de Armazenamento de Sementes , Sementes , Extratos Vegetais
12.
Curr Allergy Asthma Rep ; 23(6): 277-285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178263

RESUMO

PURPOSE OF REVIEW: Defensin-polyproline-linked proteins are relevant allergens in Asteraceae pollen. Depending on their prevalence and amount in the pollen source, they are potent allergens, as shown for the major mugwort pollen allergen Art v 1. Only a few allergenic defensins have been identified in plant foods, such as peanut and celery. This review provides an overview of structural and immunological features, IgE cross-reactivity, and diagnostic and therapeutic options regarding allergenic defensins. RECENT FINDINGS: We present and critically review the allergenic relevance of pollen and food defensins. The recently identified Api g 7 from celeriac and other allergens potentially involved in Artemisia pollen-related food allergies are discussed and related to clinical severity and allergen stability. To specify Artemisia pollen-related food allergies, we propose the term "defensin-related food allergies" to account for defensin-polyproline-linked protein-associated food syndromes. There is increasing evidence that defensins are the causative molecules in several mugwort pollen-associated food allergies. A small number of studies have shown IgE cross-reactivity of Art v 1 with celeriac, horse chestnut, mango, and sunflower seed defensins, while the underlying allergenic molecule remains unknown in other mugwort pollen-associated food allergies. As these food allergies can cause severe allergic reactions, identification of allergenic food defensins and further clinical studies with larger patient cohorts are required. This will allow molecule-based allergy diagnosis and a better understanding of defensin-related food allergies to raise awareness of potentially severe food allergies due to primary sensitization to Artemisia pollen.


Assuntos
Artemisia , Hipersensibilidade Alimentar , Humanos , Proteínas de Plantas/química , Pólen , Alérgenos , Reações Cruzadas , Imunoglobulina E , Defensinas/análise , Antígenos de Plantas
13.
Int Arch Allergy Immunol ; 184(8): 767-775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071975

RESUMO

INTRODUCTION: Recently, specific IgE (sIgE) sensitization against Gly m 8 (soy 2S albumin) has been described as a good diagnostic marker for soy allergy (SA). The aim of this study was to evaluate the diagnostic value of Gly m 8 by determining the sensitization profiles based on the homologues soy allergens Bet v 1, Ara h 1, Ara h 2, and Ara h 3. METHODS: Thirty soy-allergic adults were included; sIgE to total soy extract, Gly m 8, Gly m 4, Gly m 5, Gly m 6, Bet v 1, Ara h 1, Ara h 2, and Ara h 3 were determined. Sensitization patterns were analyzed and determined. The clinical relevance of sIgE of Gly m 8 sensitization was measured by assessing its capacity to degranulate basophils in Gly m8-sensitized patients by an indirect basophil activation test (iBAT). RESULTS: Based on the sIgE patterns of sensitization, two groups of SA patients were identified: (i) peanut-associated SA group (all patients were sensitized to one or more of the peanut compounds) and (ii) non-peanut/PR-10-associated SA group (22 patients were sensitized to Gly m 4 and Bet v 1 but not to any of the peanut compounds). A high and significant correlation between total soy extract and Gly m 6 (R2 = 0.97), Gly m 5 (R2 = 0.85), and Gly m 8 (R2 = 0.78) was observed. A nonsignificant correlation was observed between the levels of sIgE of Gly m 8 versus Ara h2. The iBAT results showed that Gly m 8 did not induce basophil degranulation in any of the peanut-associated patients, indicating that the Gly m8 sensitizations were not clinically relevant. CONCLUSIONS: Gly m 8 was not a major allergen in the selected soy-allergic population. The iBAT results indicated that Gly m 8 was not able to induce basophil degranulation in sIgE Gly m 8-sensitized soy-allergic patients. Thus, Gly m 8 would have no added value in the diagnosis of SA in the present study population.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Humanos , Adulto , Imunoglobulina E , Antígenos de Plantas , Hipersensibilidade a Amendoim/diagnóstico , Alérgenos , Albuminas 2S de Plantas , Extratos Vegetais
14.
Mol Immunol ; 157: 18-29, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966550

RESUMO

BACKGROUND: Ragweed is an invasive plant in Europe, causing hay fever and asthma in allergic patients. Climate change is predicted to increase expansion and allergenicity. Elevated NO2 induced upregulation of a new allergen in ragweed pollen, an enolase, Amb a 12. OBJECTIVE: of this study was producing ragweed enolase as a recombinant protein and characterizing its physicochemical and immunological features. METHODS: Amb a 12 was designed for E. coli and insect cell expression. Physicochemical features were determined by mass spectrometry, circular dichroism measurements and enzymatic activity assay. Immunological characteristics were determined in ELISA, in a mediator release assay and by investigation of association with clinical symptoms. Common allergen sources were screened for similar proteins. RESULTS: Ragweed enolase was produced as a 48 kDa protein forming oligomers in both expression systems, showing differences in secondary structure content and enzymatic activity depending on expression system. IgE frequency and allergenicity were low regardless of expression system. Enolase-specific serum bound to similar sized molecules in mugwort, timothy grass and birch pollen, as well as food allergen sources, while highest IgE inhibition was achieved with peach pulp extract. CONCLUSIONS: Amb a 12 had high sequence similarity and comparable IgE frequency to enolase allergens from different sources. 50 kDa proteins were found in other pollen and food allergen sources, suggesting that enolases might be pan-allergens in pollen and plant foods.


Assuntos
Ambrosia , Proteínas de Plantas , Humanos , Escherichia coli , Imunoglobulina E , Alérgenos , Antígenos de Plantas , Pólen , Fosfopiruvato Hidratase/análise
15.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838575

RESUMO

Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products.


Assuntos
Fabaceae , Hipersensibilidade Alimentar , Humanos , Nozes , Arachis/metabolismo , Óleo de Sementes de Algodão , Imunoglobulina E , Alérgenos/química , Fabaceae/metabolismo , Proteínas de Armazenamento de Sementes , Proteínas de Plantas/metabolismo , Antígenos de Plantas
16.
Sci Rep ; 13(1): 1892, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732575

RESUMO

Peach allergy is among the most frequent food allergies in the Mediterranean area, often eliciting severe anaphylactic reactions in patients. Due to the risk of severe symptoms, studies in humans are limited, leading to a lack of therapeutic options. This study aimed to develop a peach allergy mouse model as a tool to better understand the pathomechanism and to allow preclinical investigations on the development of optimized strategies for immunotherapy. CBA/J mice were sensitized intraperitoneally with peach extract or PBS, using alum as adjuvant. Afterwards, extract was administered intragastrically to involve the intestinal tract. Allergen provocation was performed via intraperitoneal injection of extract, measuring drop of body temperature as main read out of anaphylaxis. The model induced allergy-related symptoms in mice, including decrease of body temperature. Antibody levels in serum and intestinal homogenates revealed a Th2 response with increased levels of mMCPT-1, peach- and Pru p 3-specific IgE, IgG1 and IgG2a as well as increased levels of IL-4 and IL-13. FACS analysis of small intestine lamina propria revealed increased amounts of T cells, neutrophils and DCs in peach allergic mice. These data suggest the successful establishment of a peach allergy mouse model, inducing systemic as well as local gastrointestinal reactions.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Prunus persica , Humanos , Camundongos , Animais , Prunus persica/efeitos adversos , Antígenos de Plantas , Imunoglobulina E , Camundongos Endogâmicos CBA , Alérgenos , Imunoglobulina G , Imunidade , Extratos Vegetais/farmacologia , Proteínas de Plantas
17.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835455

RESUMO

Ragweed (Ambrosia artemisiifolia) pollen is a major endemic allergen source responsible for severe allergic manifestations in IgE-sensitized allergic patients. It contains the major allergen Amb a 1 and cross-reactive allergen molecules, such as the cytoskeletal protein profilin, Amb a 8 and calcium-binding allergens Amb a 9 and Amb a 10. To assess the importance of Amb a 1, profilin and calcium-binding allergen, the IgE reactivity profiles of clinically well-characterized 150 ragweed pollen-allergic patients were analysed regarding specific IgE levels for Amb a 1 and cross-reactive allergen molecules by quantitative ImmunoCAP measurements, IgE ELISA and by basophil activation experiments. By quantifying allergen-specific IgE levels we found that Amb a 1-specific IgE levels accounted for more than 50% of ragweed pollen-specific IgE in the majority of ragweed pollen-allergic patients. However, approximately 20% of patients were sensitized to profilin and the calcium-binding allergens, Amb a 9 and Amb a 10, respectively. As shown by IgE inhibition experiments, Amb a 8 showed extensive cross-reactivity with profilins from birch (Bet v 2), timothy grass (Phl p 12) and mugwort pollen (Art v 4) and was identified as a highly allergenic molecule by basophil activation testing. Our study indicates that molecular diagnosis performed by the quantification of specific IgE to Amb a 1, Amb a 8, Amb a 9 and Amb a 10 is useful to diagnose genuine sensitization to ragweed pollen and to identify patients who are sensitized to highly cross-reactive allergen molecules present in pollen from unrelated plants, in order to enable precision medicine-based approaches for the treatment and prevention of pollen allergy in areas with complex pollen sensitization.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Alérgenos/química , Profilinas , Cálcio , Proteínas de Plantas , Antígenos de Plantas , Extratos Vegetais , Reações Cruzadas , Imunoglobulina E/metabolismo , Ambrosia/metabolismo
18.
J Allergy Clin Immunol ; 151(5): 1371-1378.e5, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657603

RESUMO

BACKGROUND: The induction of allergen-specific IgE-blocking antibodies is a hallmark of allergen immunotherapy (AIT). The inhibitory bioactivity has largely been attributed to IgG4; however, our recent studies indicated the dominance of IgG1 early in AIT. OBJECTIVES: Here, the IgE-blocking activity and avidity of allergen-specific IgG1 and IgG4 antibodies were monitored throughout 3 years of treatment. METHODS: Serum samples from 24 patients were collected before and regularly during AIT with birch pollen. Bet v 1-specific IgG1 and IgG4 levels were determined by ELISA and ImmunoCAP, respectively. Unmodified and IgG1- or IgG4-depleted samples were compared for their inhibition of Bet v 1-induced basophil activation. The stability of Bet v 1-antibody complexes was compared by ELISA and by surface plasmon resonance. RESULTS: Bet v 1-specific IgG1 and IgG4 levels peaked at 12 and 24 months of AIT, respectively. Serological IgE-blocking peaked at 6 months and remained high thereafter. In the first year of therapy, depletion of IgG1 clearly diminished the inhibition of basophil activation while the absence of IgG4 hardly reduced IgE-blocking. Then, IgG4 became the main inhibitory isotype in most individuals. Both isotypes displayed high avidity to Bet v 1 ab initio of AIT, which did not increase during treatment. Bet v 1-IgG1 complexes were enduringly more stable than Bet v 1-IgG4 complexes were. CONCLUSIONS: In spite of the constant avidity of AIT-induced allergen-specific IgG1 and IgG4 antibodies, their dominance in IgE-blocking shifted in the course of treatment. The blocking activity of allergen-specific IgG1 should not be underestimated, particularly early in AIT.


Assuntos
Alérgenos , Pólen , Humanos , Anticorpos Bloqueadores , Antígenos de Plantas , Imunoglobulina E , Dessensibilização Imunológica , Imunoglobulina G
19.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36630186

RESUMO

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Assuntos
Hipersensibilidade , Nanopartículas , Humanos , Animais , Camundongos , Alérgenos/análise , Alérgenos/química , Pólen/efeitos adversos , Pólen/química , Antígenos de Plantas/análise , Antígenos de Plantas/química , Células Apresentadoras de Antígenos , Betula , Imunoglobulina E/análise
20.
Allergy ; 78(6): 1605-1614, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36704937

RESUMO

BACKGROUND: Peanut allergy is a type-I hypersensitivity immune reaction mediated by the binding of peanut allergens to IgE-FcεRI complexes on mast cells and basophils and by their subsequent cellular degranulation. Of all major peanut allergens, Ara h 2 is considered the most anaphylactic. With few options but allergen avoidance, effective treatment of allergic patients is needed. Passive immunotherapy (herein called PIT) based on prophylactic administration of peanut-specific monoclonal antibodies (mAbs) may present a promising treatment option for this under-served disease. METHOD: Fully human recombinant anti-peanut IgG mAbs were tested in mice sensitized to peanut allergen extract. Allergic mice received intravenous immunotherapy with anti-peanut Ara h 2-specific IgG1 or IgG4 mAbs cocktails, and were then challenged by a systemic injection of high-dose peanut allergen extract. The protection from allergic anaphylaxis was measured by monitoring the core body temperature. RESULTS: PIT with peanut-specific mAbs was associated with a significant and dose-dependent reduction of anaphylactic reactions in peanut-sensitized mice challenged with peanut allergen extract. Complete protection was observed at doses approximately 0.3-0.6 mg mAbs. Mixtures of mAbs were more effective than single mAbs, and effective treatment could be obtained with mAbs of both IgG1 and IgG4 subclasses. The therapeutic effect of anti-Ara h 2 mAbs was based on allergen neutralization and independent of the Fcγ receptor and mast-cell inhibition. CONCLUSION: This is the first report that shows that human-derived anti-peanut mAbs can prevent allergic anaphylaxis in mice. The study demonstrates that neutralizing allergenic epitopes on Ara h 2 by mAbs may represent a promising treatment option in peanut-allergy.


Assuntos
Anafilaxia , Hipersensibilidade Imediata , Hipersensibilidade a Amendoim , Humanos , Camundongos , Animais , Anafilaxia/prevenção & controle , Anticorpos Monoclonais , Antígenos de Plantas , Hipersensibilidade a Amendoim/prevenção & controle , Alérgenos , Proteínas Recombinantes , Imunoglobulina G , Arachis , Extratos Vegetais , Albuminas 2S de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA