Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Fertil Dev ; 35(4): 307-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593258

RESUMO

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS: The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS: The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS: These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS: These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.


Assuntos
Cistos Ovarianos , Aves Predatórias , Feminino , Animais , Camundongos , Humanos , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Aves Predatórias/genética , Aves Predatórias/metabolismo , Mamíferos/genética
2.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063491

RESUMO

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE-PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE-PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems-cAMP-specific PDE8-PKAR, cGMP-specific PDE5-PKG, and dual-specificity RegA-RD complexes-and ranked inhibitors according to their inhibition potency. Targeting PDE-PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Fosfodiesterase/farmacologia , Extratos Vegetais/farmacologia , Proteínas Quinases/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Domínio Catalítico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Polarização de Fluorescência , Terapia de Alvo Molecular , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato
3.
SLAS Discov ; 26(9): 1177-1188, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112017

RESUMO

Regulators of G protein signaling (RGS) proteins serve as critical regulatory nodes to limit the lifetime and extent of signaling via G protein-coupled receptors (GPCRs). Previously, approaches to pharmacologically inhibit RGS activity have mostly focused on the inhibition of GTPase activity by interrupting the interaction of RGS proteins with the G proteins they regulate. However, several RGS proteins are also regulated by association with binding partners. A notable example is the mammalian RGS7 protein, which has prominent roles in metabolic control, vision, reward, and actions of opioid analgesics. In vivo, RGS7 exists in complex with the binding partners type 5 G protein ß subunit (Gß5) and R7 binding protein (R7BP), which control its stability and activity, respectively. Targeting the whole RGS7/Gß5/R7BP protein complex affords the opportunity to allosterically tune opioid receptor signaling following opioid engagement while potentially bypassing undesirable side effects. Hence, we implemented a novel strategy to pharmacologically target the interaction between RGS7/Gß5 and R7BP. To do so, we searched for protein complex inhibitors using a time-resolved fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay that measures compound-mediated alterations in the FRET signal between RGS7/Gß5 and R7BP. We performed two HTS campaigns, each screening ~100,000 compounds from the Scripps Drug Discovery Library (SDDL). Each screen yielded more than 100 inhibitors, which will be described herein.


Assuntos
Descoberta de Drogas , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas RGS/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
4.
Plant Cell ; 33(8): 2869-2882, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34009315

RESUMO

Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1. We unexpectedly found that loss of the SMC5/6 partially suppresses the rad51 knockout mutant in terms of sterility, pollen inviability, and meiotic chromosome fragmentation in a DMC1-dependent manner in Arabidopsis thaliana. Biochemical and cytological studies revealed that the DMC1 localization in meiotic chromosomes is inhibited by the SMC5/6 complex, which is attenuated by RAD51 through physical interactions. This study not only identified the long-sought-after function of RAD51 in meiosis but also discovered the inhibition of SMC5/6 on DMC1 as a control mechanism during meiotic recombination.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Rad51 Recombinase/genética , Recombinases Rec A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Mutação com Perda de Função , Meiose , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Rad51 Recombinase/metabolismo , Recombinases Rec A/genética
5.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540902

RESUMO

Human epidermal keratinocytes are constantly exposed to UV radiation. As a result, there is a significant need for safe and effective compounds to protect skin cells against this environmental damage. This study aimed to analyze the effect of phytocannabinoid-cannabinoid (CBD)-on the proteome of UVA/B irradiated keratinocytes. The keratinocytes were cultured in a three-dimensional (3D) system, designed to mimic epidermal conditions closely. The obtained results indicate that CBD protected against the harmful effects of UVA/B radiation. CBD decreased the expression of proinflammatory proteins, including TNFα/NFκB and IκBKB complex and decreased the expression of proteins involved in de novo protein biosynthesis, which are increased in UVA/B-irradiated cells. Additionally, CBD enhanced the UV-induced expression of 20S proteasome subunits. CBD also protected protein structures from 4-hydroxynonenal (HNE)-binding induced by UV radiation, which primarily affects antioxidant enzymes. CBD-through its antioxidant/anti-inflammatory activity and regulation of protein biosynthesis and degradation-protects skin cells against UVA/B-induced changes. In the future, its long-term use in epidermal cells should be investigated.


Assuntos
Canabidiol/farmacologia , Queratinócitos/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Aldeídos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Canabidiol/química , Técnicas de Cultura de Células , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Quinase I-kappa B/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Estrutura Molecular , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Análise de Componente Principal , Proteoma/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo
6.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599898

RESUMO

Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein-protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein-protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.


Assuntos
Inibidores Enzimáticos/farmacologia , Helicobacter pylori/metabolismo , Complexos Multiproteicos/metabolismo , Urease/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Urease/química , Urease/metabolismo
7.
Sci Adv ; 6(14): eaay4472, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270035

RESUMO

The potassium channel Kv7.1 associates with the KCNE1 regulatory subunit to trigger cardiac I Ks currents. Although the Kv7.1/KCNE1 complex has received much attention, the subcellular compartment hosting the assembly is the subject of ongoing debate. Evidence suggests that the complex forms either earlier in the endoplasmic reticulum or directly at the plasma membrane. Kv7.1 and KCNE1 mutations, responsible for long QT syndromes, impair association and traffic, thereby altering I Ks currents. We found that Kv7.1 and KCNE1 do not assemble in the first stages of their biogenesis. Data support an unconventional secretory pathway for Kv7.1-KCNE1 that bypasses Golgi. This route targets channels to endoplasmic reticulum-plasma membrane junctions, where Kv7.1-KCNE1 assemble. This mechanism helps to resolve the ongoing controversy about the subcellular compartment hosting the association. Our results also provide new insights into I Ks channel localization at endoplasmic reticulum-plasma membrane junctions, highlighting an alternative anterograde trafficking mechanism for oligomeric ion channels.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Complexos Multiproteicos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transporte Biológico , Biomarcadores , Imunofluorescência , Genes Reporter , Humanos , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Ligação Proteica
8.
J Transl Med ; 17(1): 215, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266509

RESUMO

BACKGROUND: Tumor necrosis factor α (TNFα) is a multifunctional cytokine with a potent pro-inflammatory effect. It is a validated therapeutic target molecule for several disorders related to autoimmunity and inflammation. TNFα-TNF receptor-1 (TNFR1) signaling contributes to the pathological processes of these disorders. The current study is focused on finding novel small molecules that can directly bind to TNFα and/or TNFR1, preventing the interaction between TNFα or TNFR1, and regulating downstream signaling pathways. METHODS: Cheminformatics pipeline (pharmacophore modeling, virtual screening, molecular docking and in silico ADMET analysis) was used to screen for novel TNFα and TNFR1 inhibitors in the Zinc database. The pharmacophore-based models were generated to screen for the best drug like compounds in the Zinc database. RESULTS: The 39, 37 and 45 best hit molecules were mapped with the core pharmacophore features of TNFα, TNFR1, and the TNFα-TNFR1 complex respectively. They were further evaluated by molecular docking, protein-ligand interactions and in silico ADMET studies. The molecular docking analysis revealed the binding energies of TNFα, TNFR1 and the TNFα-TNFR1 complex, the basis of which was used to select the top five best binding energy compounds. Furthermore, in silico ADMET studies clearly revealed that all 15 compounds (ZINC09609430, ZINC49467549, ZINC13113075, ZINC39907639, ZINC25251930, ZINC02968981, ZINC09544246, ZINC58047088, ZINC72021182, ZINC08704414, ZINC05462670, ZINC35681945, ZINC23553920, ZINC05328058, and ZINC17206695) satisfied the Lipinski rule of five and had no toxicity. CONCLUSIONS: The new selective TNFα, TNFR1 and TNFα-TNFR1 complex inhibitors can serve as anti-inflammatory agents and are promising candidates for further research.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Química Computacional/métodos , Descoberta de Drogas/métodos , Complexos Multiproteicos/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/análise , Ligação Competitiva , Domínio Catalítico/efeitos dos fármacos , Biologia Computacional/métodos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
9.
Cell Chem Biol ; 26(9): 1203-1213.e13, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31231029

RESUMO

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolic processes. Dysregulation of this kinase complex can result in a variety of human diseases. Rapamycin and its analogs target mTORC1 directly; however, chronic treatment in certain cell types and in vivo results in the inhibition of both mTORC1 and mTORC2. We have developed a high-throughput cell-based screen for the detection of phosphorylated forms of the mTORC1 (4E-BP1, S6K1) and mTORC2 (Akt) substrates and have identified and characterized a chemical scaffold that demonstrates a profile consistent with the selective inhibition of mTORC1. Stable isotope labeling of amino acids in cell culture-based proteomic target identification revealed that class I glucose transporters were the primary target for these compounds yielding potent inhibition of glucose uptake and, as a result, selective inhibition of mTORC1. The link between the glucose uptake and selective mTORC1 inhibition are discussed in the context of a yet-to-be discovered glucose sensor.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Fosforilação , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/metabolismo , Fatores de Transcrição/metabolismo
10.
J Biomol NMR ; 73(6-7): 375-384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073665

RESUMO

The insertase BamA is an essential protein of the bacterial outer membrane. Its 16-stranded transmembrane ß-barrel contains a lateral gate as a key functional element. This gate is formed by the C-terminal half of the last ß-strand. The BamA barrel was previously found to sample different conformations in aqueous solution, as well as different gate-open, gate-closed, and collapsed conformations in X-ray crystallography and cryo-electron microscopy structures. Here, we report the successful identification of conformation-selective nanobodies that stabilize BamA in specific conformations. While the initial candidate generation and selection protocol was based on established alpaca immunization and phage display selection procedures, the final selection of nanobodies was enhanced by a solution NMR-based screening step to shortlist the targets for crystallization. In this way, three crystal structures of BamA-nanobody complexes were efficiently obtained, showing two types of nanobodies that indeed stabilized BamA in two different conformations, i.e., with open and closed lateral gate, respectively. Then, by correlating the structural data with high resolution NMR spectra, we could for the first time assign the BamA conformational solution ensemble to defined structural states. The new nanobodies will be valuable tools towards understanding the client insertion mechanism of BamA and towards developing improved antibiotics.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Modelos Moleculares , Conformação Proteica , Anticorpos de Domínio Único/química , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Anticorpos de Domínio Único/farmacologia , Soluções
11.
Plant Physiol ; 180(1): 198-211, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770461

RESUMO

Cadmium (Cd) is a major heavy metal pollutant, and Cd toxicity is a serious cause of abiotic stress in the environment. Plants protect themselves against Cd stress through a variety of pathways. In a recent study, we found that mitochondrial pyruvate carriers (MPCs) are involved in Cd tolerance in Arabidopsis (Arabidopsis thaliana). Following the identification of MPCs in yeast (Saccharomyces cerevisiae) in 2012, most studies have focused on the function of MPCs in animals, as a possible approach to reduce the risk of cancer developing. The results of this study show that AtMPC protein complexes are required for Cd tolerance and prevention of Cd accumulation in Arabidopsis. AtMPC complexes are composed of two elements, AtMPC1 and AtMPC2 (AtNRGA1 or AtMPC3). When the formation of AtMPCs was interrupted by the loss of AtMPC1, glutamate could supplement the synthesis of acetyl-coenzyme A and sustain the TCA cycle. With the up-regulation of glutathione synthesis following exposure to Cd stress, the supplementary pathway could not efficiently drive the tricarboxylic acid cycle without AtMPC. The ATP content decreased concomitantly with the deletion of tricarboxylic acid activity, which led to Cd accumulation in Arabidopsis. More importantly, ScMPCs were also required for Cd tolerance in yeast. Our results suggest that the mechanism of Cd tolerance may be similar in other species.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Glutationa/biossíntese , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cádmio/farmacocinética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Ácido Glutâmico/metabolismo , Proteínas de Membrana/genética , Microrganismos Geneticamente Modificados , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/genética
12.
J Med Chem ; 61(16): 7387-7393, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30040896

RESUMO

Beyond the targeting of E3 ubiquitin ligases to inhibit protein homeostasis, E3 ligase binders can be repurposed as targeted protein degraders (PROTACs or molecular glues). We sought to identify new binders of the VHL E3 ligase by biophysical fragment-based screening followed by X-ray crystallographic soaking. We identified fragments binding at the ElonginC:Cullin2 interface and a new cryptic pocket in VHL, along with other potential ligandable sites predicted computationally and found to bind solvent molecules in crystal structures. The elucidated interactions provide starting points for future ligand development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Complexos Multiproteicos/química , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Elonguina/química , Elonguina/metabolismo , Fluorometria/métodos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/metabolismo , Policitemia/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/química , Proteína Supressora de Tumor Von Hippel-Lindau/química
13.
Stem Cell Reports ; 10(4): 1324-1339, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29503092

RESUMO

Yin Yang 1 (YY1) regulates early embryogenesis and adult tissue formation. However, the role of YY1 in stem cell regulation remains unclear. YY1 has a Polycomb group (PcG) protein-dependent role in mammalian cells. The PcG-independent functions of YY1 are also reported, although their underlying mechanism is still undefined. This paper reports the role of YY1 and BAF complex in the OCT4-mediated pluripotency network in mouse embryonic stem cells (mESCs). The interaction between YY1 and BAF complex promotes mESC proliferation and pluripotency. Knockdown of Yy1 or Smarca4, the core component of the BAF complex, downregulates pluripotency markers and upregulates several differentiation markers. Moreover, YY1 enriches at both promoter and super-enhancer regions to stimulate transcription. Thus, this study elucidates the role of YY1 in regulating pluripotency through its interaction with OCT4 and the BAF complex and the role of BAF complex in integrating YY1 into the core pluripotency network.


Assuntos
Elementos Facilitadores Genéticos/genética , Células-Tronco Embrionárias Murinas/metabolismo , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Redes e Vias Metabólicas , Camundongos , Modelos Biológicos , Fator 3 de Transcrição de Octâmero/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas
14.
J Biol Chem ; 293(11): 4014-4025, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29414793

RESUMO

Protein-protein interactions (PPIs) are an important category of putative drug targets. Improvements in high-throughput screening (HTS) have significantly accelerated the discovery of inhibitors for some categories of PPIs. However, methods suitable for screening multiprotein complexes (e.g. those composed of three or more different components) have been slower to emerge. Here, we explored an approach that uses reconstituted multiprotein complexes (RMPCs). As a model system, we chose heat shock protein 70 (Hsp70), which is an ATP-dependent molecular chaperone that interacts with co-chaperones, including DnaJA2 and BAG2. The PPIs between Hsp70 and its co-chaperones stimulate nucleotide cycling. Thus, to re-create this ternary protein system, we combined purified human Hsp70 with DnaJA2 and BAG2 and then screened 100,000 diverse compounds for those that inhibited co-chaperone-stimulated ATPase activity. This HTS campaign yielded two compounds with promising inhibitory activity. Interestingly, one inhibited the PPI between Hsp70 and DnaJA2, whereas the other seemed to inhibit the Hsp70-BAG2 complex. Using secondary assays, we found that both compounds inhibited the PPIs through binding to allosteric sites on Hsp70, but neither affected Hsp70's intrinsic ATPase activity. Our RMPC approach expands the toolbox of biochemical HTS methods available for studying difficult-to-target PPIs in multiprotein complexes. The results may also provide a starting point for new chemical probes of the Hsp70 system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Descoberta de Drogas , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Ligação Proteica
15.
Clin Sci (Lond) ; 131(21): 2643-2653, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982725

RESUMO

Leucine modulates muscle protein synthesis (MPS), with potential to facilitate accrual/maintenance of muscle mass. Animal models suggest that leucine boluses shortly after meals may prolong MPS and delay onset of a "muscle-full" state. However, the effects of nutrient "top-ups" in humans, and particularly older adults where deficits exist, have not been explored. We determined the effects of a leucine top-up after essential amino acid (EAA) feeding on anabolic signaling, MPS, and muscle energy metabolism in older men. During 13C6-phenylalanine infusion, 16 men (∼70 years) consumed 15 g of EAA with (n=8, FED + LEU) or without (n=8, FED) 3 g of leucine top-up 90 min later. Repeated blood and muscle sampling permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling including mTOR complex 1 (mTORC1) substrates, cellular ATP and phosphorylocreatine, and MPS. Oral EAA achieved rapid insulinemia (12.5 iU·ml-1 25 min post-feed), essential aminoacidemia (3000 µM, 45-65 min post-feed), and activation of mTORC1 signaling. Leucine top-up prolonged plasma EAA (2800 µM, 135 min) and leucine availability (1050 µM, 135 min post-feed). Fasting FSRs of 0.046 and 0.056%·h-1 (FED and FED + LEU respectively) increased to 0.085 and 0.085%·h-1 90-180 min post-feed and returned to basal rates after 180 min in both groups. Phosphorylation of mTORC1 substrates returned to fasting levels 240 min post-feed in both groups. Feeding had limited effect on muscle high-energy phosphates, but did induce eukaryotic elongation factor 2 (eEF2) phosphorylation. We demonstrate the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period; thus, leucine supplements should be taken outside of meals, or with meals containing suboptimal protein in terms of either amount or EAA composition.


Assuntos
Envelhecimento/metabolismo , Anabolizantes/administração & dosagem , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Leucina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Período Pós-Prandial , Biossíntese de Proteínas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Fatores Etários , Idoso , Envelhecimento/sangue , Anabolizantes/sangue , Humanos , Insulina/sangue , Leucina/sangue , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Fosforilação , Estudos Prospectivos , Fatores Sexuais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
16.
Nat Chem Biol ; 13(11): 1179-1186, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920930

RESUMO

The GATOR1 (SEACIT) complex consisting of Iml1-Npr2-Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid replete and thus repress metabolic activities that are important for achieving this state. We found that npr2Δ mutants have defective mitochondrial tricarboxylic acid (TCA)-cycle activity and retrograde response. Supplementation with glutamine, and especially aspartate, which are nitrogen-containing forms of TCA-cycle intermediates, rescues growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings revealed that negative regulators of TORC1, such as GATOR1 (SEACIT), regulate the cataplerotic synthesis of these amino acids from the TCA cycle, in tune with the amino acid and nitrogen status of cells.


Assuntos
Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Aspártico/metabolismo , Glutamina/metabolismo , Complexos Multiproteicos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Biosci Trends ; 11(4): 427-438, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28717062

RESUMO

Female fertility declines with age as the number of ovarian follicles decreases and aneuploidy increases. Degradation of the cohesin complex might be responsible for age-related aneuploidy. Dehydroepiandrosterone (DHEA) can improve the ovarian reserve and reduce the rate of aneuploidy, but the relationship between DHEA and cohesin levels in oocytes is still unknown. The aim of the current study was to evaluate the effect of the supplement DHEA on ovarian function, including the number of follicles and cohesin levels in oocytes. C57BL/6J mice at 3 weeks, 6 weeks, 12 weeks, 6 months, and 10 months of age were used to obtain a systematic view into follicle apoptosis and cohesin levels in oocytes. Nine-month-old C57BL/6J mice were administered saline (n = 5), 17ß-estradiol (100 µg/kg per day, n = 5), or DHEA (5mg/Kg per day, n = 5). After 4 weeks, aged mice were weighed and sacrificed, and ovarian tissue samples were prepared. Anti-VASA staining and HE staining were used to count the number of follicles. Anti-γH2AX staining and TUNEL were used to measure follicle apoptosis and immunofluorescent staining was used to detect the levels of three oocyte cohesin subunits: REC8, SMC1ß, and SMC3. Administration of the supplements 17ß-estradiol and DHEA to aged mice increased the number of primordial and primary follicles and decreased the age-related apoptosis of follicles. Levels of the cohesin subunits REC8 and SMC1ß declined with age, but DHEA and 17ß-estradiol tended to delay that decline. The supplement DHEA increased the number of primordial and primary follicles in aged mice by inhibiting follicle apoptosis and tended to delay the decrease in cohesin levels in oocytes.


Assuntos
Envelhecimento/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Desidroepiandrosterona/farmacologia , Oócitos/citologia , Oócitos/metabolismo , Animais , Hormônio Antimülleriano/sangue , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Desidroepiandrosterona/administração & dosagem , Estradiol/sangue , Feminino , Atresia Folicular/sangue , Atresia Folicular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Subunidades Proteicas/metabolismo , Coesinas
18.
Nat Genet ; 49(8): 1192-1201, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628108

RESUMO

Few monogenic causes for severe manifestations of common allergic diseases have been identified. Through next-generation sequencing on a cohort of patients with severe atopic dermatitis with and without comorbid infections, we found eight individuals, from four families, with novel heterozygous mutations in CARD11, which encodes a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant CARD11 expression constructs into T cell lines demonstrated both loss-of-function and dominant-interfering activity upon antigen receptor-induced activation of nuclear factor-κB and mammalian target of rapamycin complex 1 (mTORC1). Patient T cells had similar defects, as well as low production of the cytokine interferon-γ (IFN-γ). The mTORC1 and IFN-γ production defects were partially rescued by supplementation with glutamine, which requires CARD11 for import into T cells. Our findings indicate that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Dermatite Atópica/genética , Mutação em Linhagem Germinativa , Guanilato Ciclase/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Dermatite Atópica/imunologia , Feminino , Genes Dominantes , Glutamina/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Linhagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Cell Death Dis ; 8(4): e2755, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425984

RESUMO

Maintenance of telomere length is the most consistent attribute of cancer cells. Tightly connected to their capacity to overcome replicative mortality, it is achieved either by activation of telomerase or an Alternative mechanism of Lengthening of Telomeres (ALT). Disruption of either of these mechanisms has been shown to induce DNA damage signalling leading to senescence or apoptosis. Telomerase inhibitors are considered as potential anticancer drugs but are ineffective for ALT cancers (~15% of all cancers). Withaferin-A (Wi-A), a major constituent of the medicinal plant, Withania somnifera (Ashwagandha), has been shown to exert anti-tumour activity. However, its effect on either telomerase or ALT mechanisms has not been investigated. Here, by using isogenic cancer cells with/without telomerase, we found that Wi-A caused stronger cytotoxicity to ALT cells. It was associated with inhibition of ALT-associated promyelocytic leukemia nuclear bodies, an established marker of ALT. Comparative analyses of telomerase positive and ALT cells revealed that Wi-A caused stronger telomere dysfunction and upregulation of DNA damage response in ALT cells. Molecular computational and experimental analyses revealed that Wi-A led to Myc-Mad mediated transcriptional suppression of NBS-1, an MRN complex protein that is an essential component of the ALT mechanism. The results suggest that Wi-A could be a new candidate drug for ALT cancers.


Assuntos
Modelos Moleculares , Neoplasias/enzimologia , Neoplasias/patologia , Telomerase/metabolismo , Vitanolídeos/química , Vitanolídeos/farmacologia , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica/efeitos dos fármacos , Telômero/metabolismo , Homeostase do Telômero/efeitos dos fármacos
20.
J Cell Physiol ; 232(10): 2741-2749, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28218386

RESUMO

Osteoarthritis (OA) is currently still an irreversible degenerative disease of the articular cartilage. Recent, dextrose (d-glucose) intraarticular injection prolotherapy for OA patients has been reported to benefit the chondrogenic stimulation of damaged cartilage. However, the detailed mechanism of glucose's effect on cartilage repair remains unclear. Chitosan, a naturally derived polysaccharide, has recently been investigated as a surgical or dental dressing to control breeding. Therefore, in this study, glucose was adsorbed to chitosan membranes (CTS-Glc), and the study aimed to investigate whether CTS-Glc complex membranes could regulate the proliferation of human OA chondrocytes and to explore the underlying mechanism. Human OA and SW1353 chondrocytes were used in this study. The experiments involving the transfection of cells used SW1353 chondrocytes. A specific inhibitor and siRNAs were used to investigate the mechanism underlying the CTS-Glc-regulated proliferation of human chondrocytes. We found that CTS-Glc significantly increased the proliferation of both human OA and SW1353 chondrocytes comparable to glucose- or chitosan-only stimulation. The role of mammalian target of rapamycin complex 1 (mTORC1) signaling, including mTOR, raptor, and S6k proteins, has been demonstrated in the regulation of CTS-Glc-increased human chondrocyte proliferation. mTORC1 signaling increased the expression levels of maturated SREBP-1 and FASN and then induced the expressions of cell cycle regulators, that is, cyclin D, cyclin-dependent kinase-4 and -6 in human chondrocytes. This study elucidates the detailed mechanism behind the effect of CTS-Glc complex membranes in promoting chondrocyte proliferation and proposes a possible clinical application of the CTS-Glc complex in the dextrose intraarticular injection of OA prolotherapy in the future to attenuate the pain and discomfort of OA patients.


Assuntos
Antirreumáticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Quitosana/farmacologia , Condrócitos/efeitos dos fármacos , Glucose/farmacologia , Membranas Artificiais , Complexos Multiproteicos/metabolismo , Osteoartrite/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adsorção , Idoso , Antirreumáticos/química , Técnicas de Cultura de Células , Linhagem Celular , Quitosana/química , Condrócitos/enzimologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Glucose/química , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Osteoartrite/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteína Regulatória Associada a mTOR , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Tempo , Transfecção , Homólogo LST8 da Proteína Associada a mTOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA