Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(2): 554-568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37733166

RESUMO

PURPOSE AND METHODS: Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT: Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION: In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.


Assuntos
Cucumis sativus , Ciclopentanos , Hidroxibenzoatos , Oxilipinas , Selênio , Cucumis sativus/genética , Cucumis sativus/microbiologia , Cucurbitacinas , Selênio/farmacologia , Selênio/metabolismo , Botrytis/fisiologia , Plantas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
2.
Virology ; 588: 109891, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826911

RESUMO

Trichosanthes kirilowii has been mainly grown for use in traditional Chinese medicine. In this study, cucurbit mild mosaic virus (CuMMV) belonging to the genus Fabavirus was identified from T. kirilowii plants. CuMMV possesses a segmented, bipartite linear single-stranded RNA genome composed of RNA1 and RNA2. Sequence analysis showed that each genomic segment shares the highest sequence similarity with those of CuMMV isolated from pumpkin. A full-length infectious cDNA clone of CuMMV was further constructed and was found to induce typical symptoms in T. kirilowii, Cucumis sativus, C. melo, Citrullus lanatus, and Cucurbita pepo. The sap inoculum derived from the infectious cDNA clone of CuMMV could be mechanically transmitted and reproduce similar symptoms in the tested plants. This is the first report on the construction of a biologically active, full-length infectious cDNA clone of CuMMV, which will provide a useful tool in understanding CuMMV-encoded proteins and plant-CuMMV interactions.


Assuntos
Cucumis sativus , Fabavirus , Vírus do Mosaico , Trichosanthes , Trichosanthes/genética , DNA Complementar/genética , Fabavirus/genética , Cucumis sativus/genética , Plantas , Vírus do Mosaico/genética
3.
J Biotechnol ; 374: 49-69, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517677

RESUMO

Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Proteínas de Choque Térmico/genética , Multiômica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
4.
Food Res Int ; 156: 111138, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651010

RESUMO

The fruit nutrigenomics is an interesting and important research area towards nutrition enhancement. The phytic acid is one of the major antinutrient compound, present in seeded fruits and crops. It hinders the absorption of iron (Fe), zinc (Zn), magnesium (Mg), potassium (K) and calcium (Ca), causing mineral deficiencies. In the present study, the BsPhy gene was overexpressed in the cucumber fruits using the tomato fruit specific E8 and constitutive CaMV 35S promoter. The E8 promoter imparted heterologous expression of GUS gene in cucumber fruits, furthermore, the fruit specific expression of E8 promoter with BsPhy gene was confirmed in transgenics (E8::BsPhy) using anti rabbit-phytase antibody. The physio-biochemical analysis of transgenics revealed, maximum phytase activity in E8::BsPhy cucumber fruits at 10 days after anthesis (DAA) compared to 35S::BsPhy and wild-type (WT) fruits. Consequently, E8::BsPhy fruits also showed increased amount of inorganic phosphorus (Pi), total phosphorus (P), minerals (Zn, Fe, Mg, K, Ca), total carotenoid and other macronutrients at 10 DAA compared to 35S::BsPhy fruits. The metabolite profiling of fruits (10 DAA) showed increased sugars, amino acids, sugar acids and polyols, in both E8::BsPhy and 35S::BsPhy transgenics suggesting higher phytate metabolism, compared to WT fruits. Interestingly, both the transgenic fruits showed higher fruit biomass and yield along with improved nutritional quality, which can be attributed to increased P and Zn contents in transgenic fruits, compared to WT fruits. Our findings reveal that the BsPhy gene enhances minerals and macronutrients in transgenic cucumber fruits making it nutritious and healthy.


Assuntos
6-Fitase , Cucumis sativus , 6-Fitase/genética , Animais , Bacillus subtilis/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Minerais/metabolismo , Fósforo , Compostos Fitoquímicos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Coelhos
5.
Plant Mol Biol ; 109(4-5): 401-411, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34114167

RESUMO

KEY MESSAGE: A number of mutational changes in transcriptional regulators of defense metabolism have occurred during plant domestication and improvement. Plant domestication and improvement entail genetic changes that underlie divergence in development and metabolism, providing a tremendous model of biological evolution. Plant metabolism produces numerous specialized alkaloids, terpenoids, phenolics, and cyanogenic glucosides with indispensable roles in defense against herbivory and microbial infection. Many compounds toxic or deterrent to predators have been eliminated through domestication and breeding. Series of genes involved in defense metabolism are coordinately regulated by transcription factors that specifically recognize cis-regulatory elements in promoter regions of downstream target genes. Recent developments in DNA sequencing technologies and genomic approaches have facilitated studies of the metabolic and genetic changes in chemical defense that have occurred via human-mediated selection, many of which result from mutations in transcriptional regulators of defense metabolism. In this article, we review such examples in almond (Prunus dulcis), cucumber (Cucumis sativus), pepper (Capsicum spp.), potato (Solanum tuberosum), quinoa (Chenopodium quinoa), sorghum (Sorghum bicolor), and related species and discuss insights into the evolution and regulation of metabolic pathways for specialized defense compounds.


Assuntos
Cucumis sativus , Solanum tuberosum , Sorghum , Cucumis sativus/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Solanum tuberosum/genética , Sorghum/genética , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830208

RESUMO

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.


Assuntos
Compostos Alílicos/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/microbiologia , Dissulfetos/farmacologia , Fungicidas Industriais/farmacologia , Alho/química , Peronospora/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Transcriptoma/efeitos dos fármacos
7.
Genes (Basel) ; 12(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356080

RESUMO

Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/efeitos da radiação , Flores/genética , Flores/metabolismo , Flores/efeitos da radiação , Genoma de Planta , Melhoramento Vegetal , Proteínas de Plantas/genética
8.
Plant Physiol Biochem ; 156: 209-220, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32977177

RESUMO

Salt stress is a continuous threat to global crop production. Here, we studied the alleviation role of exogenous silicon (Si) in NaCl-stressed cucumber, with special emphasis on plant growth, proline (Pro) and hormone metabolisms. The results showed that Si supplementation ameliorated the adverse effects of NaCl on plants growth, biomass, and oxidative stress. Salt stress greatly increased the content of Pro throughout the experiment, while Si regulated Pro content in two distinct ways. Si promoted the salt-induced Pro levels after 3 and 6 days of treatment, but decreased it after 9 and 12 days of treatment. Moreover, P5CS and ProDH activities and P5CS gene play important roles in Si and salt-regulated Pro levels in different stress phase. Under stress condition, Si addition tend to revert the content of ABA, IAA, cytokinin and SA to the control levels in most cases. Further correlation analysis revealed a negative correlation between the root cytokinin and Pro content after 3 days of treatment, suggesting the interaction between cytokinin and Pro metabolism. Exogenous application of Pro and ProDH competitive inhibitor D-Lactate confirmed the possible interplay between Pro and cytokinin metabolism. Further study identified several CKX (Csa4G647490 and Csa1G589070) and IPT (Csa7G392940 and Csa3G150100) genes that may be responsible for the regulation of cytokinin accumulation by Si and/or Pro after short-term of treatment. The results suggested that Pro is a key factor in Si-induced salt tolerance, and Si-increased Pro content may participate in the regulation of cytokinin metabolism under short-term of salt stress.


Assuntos
Cucumis sativus/fisiologia , Citocininas/fisiologia , Prolina/fisiologia , Estresse Salino , Silício/farmacologia , Cucumis sativus/genética , Genes de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Salinidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-32464332

RESUMO

The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.


Assuntos
Cucumis sativus/enzimologia , Sistema Enzimático do Citocromo P-450/química , Peróxidos Lipídicos/química , Proteínas de Plantas/química , Solanum tuberosum/enzimologia , Clonagem Molecular , Cucumis sativus/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , RNA de Plantas , Proteínas Recombinantes/química , Solanum tuberosum/genética
10.
Comput Biol Chem ; 85: 107212, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058944

RESUMO

WRKY genes, comprises one among a large clan of transcription factor (TFs) genes in the plant kingdom, playing a fundamental role in the vegetative and reproductive growth, development and stress responses of a plant. In spite of several studies on cucumber (Cucumis sativus L.), WRKY genes and their interaction with stress response is limited. The present study, on the whole genome of cucumber was analyzed for WRKY genes which recognized 62 CsWRKY genes associated with the proteins obtained from lineages of supplementary plants. The physicochemical properties reveal the CsWRKY gene is ser-rich TF (6.70-18.40 %). The chromosomal distribution showed that all putative CsWRKY genes were distributed in seven chromosomes, enriched on chromosome 3 and 6 and least on chromosome 5. Based on phylogenetic analysis, along with motif determination and gene structure analysis, CsWRKYs are categorized as a Group I, II and III. The Group II further subdivided as Groups IIa-e. In the present study, it was observed that Group II WRKY-TFs was the largest group containing 43 WRKY genes containing a single WD (WRKY domain - WRKYGQK/WRKYGKK) and C2H2 type zinc finger structure (C-X4-5-C-X23-H-X1-H). The data also revealed that chromosome 3 and 5 contained all the three major groups and chromosome 6 contained I and II WRKY genes with uneven distribution. STRING analysis of selected CsWRKY proteins expressed in response to abiotic stress interacts with the CsMAPK proteins. Analysis of cis-acting elements and results suggest that CSWRKY genes play important role in response to biotic and abiotic stress. Response also predicted the candidate gene expression in cucumber during its development under different cellular condition.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , Cucumis sativus/genética , Genes de Plantas/genética , Fatores de Transcrição/genética , Filogenia
11.
Molecules ; 24(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500271

RESUMO

Garlic and formulations containing allicin are used widely as fungicides in modern agriculture. However, limited reports are available on the allelopathic mechanism of green garlic volatile organic compounds (VOCs) and its component allelochemicals. The aim of this study was to investigate VOCs of green garlic and their effect on scavenging of reactive oxygen species (ROS) in cucumber. In this study, green garlic VOCs were collected by HS-SPME, then analyzed by GS-MS. Their biological activity were verified by bioassays. The results showed that diallyl disulfide (DADS) is the main allelochemical of green garlic VOCs and the DADS content released from green garlic is approximately 0.08 mg/g. On this basis, the allelopathic effects of green garlic VOCs in vivo and 1 mmol/L DADS on scavenging of ROS in cucumber seedlings were further studied. Green garlic VOCs and DADS both reduce superoxide anion and increase the accumulation of hydrogen peroxide of cucumber seedlings. They can also regulate active antioxidant enzymes (SOD, CAT, POD), antioxidant substances (MDA, GSH and ASA) and genes (CscAPX, CsGPX, CsMDAR, CsSOD, CsCAT, CsPOD) responding to oxidative stress in cucumber seedlings.


Assuntos
Compostos Alílicos/farmacologia , Cucumis sativus/metabolismo , Dissulfetos/farmacologia , Alho/química , Espécies Reativas de Oxigênio/análise , Compostos Alílicos/isolamento & purificação , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Dissulfetos/isolamento & purificação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Estresse Oxidativo/efeitos dos fármacos , Feromônios/isolamento & purificação , Feromônios/farmacologia , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Superóxidos/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
12.
Plant Physiol ; 180(2): 986-997, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967482

RESUMO

In plants, male sterility is an important agronomic trait, especially in hybrid crop production. Many factors are known to affect crop male sterility, but it remains unclear whether Suc transporters (SUTs) participate directly in this process. Here, we identified and functionally characterized the cucumber (Cucumis sativus) CsSUT1, a typical plasma membrane-localized energy-dependent high-affinity Suc-H+ symporter. CsSUT1 is expressed in male flowers and encodes a protein that is localized primarily in the tapetum, pollen, and companion cells of the phloem of sepals, petals, filaments, and pedicel. The male flowers of CsSUT1-RNA interference (RNAi) lines exhibited a decrease in Suc, hexose, and starch content, relative to those of the wild type, during the later stages of male flower development, a finding that was highly associated with male sterility. Transcriptomic analysis revealed that numerous genes associated with sugar metabolism, transport, and signaling, as well as with auxin signaling, were down-regulated, whereas most myeloblastosis (MYB) transcription factor genes were up-regulated in these CsSUT1-RNAi lines relative to wild type. Our findings demonstrate that male sterility can be induced by RNAi-mediated down-regulation of CsSUT1 expression, through the resultant perturbation in carbohydrate delivery and subsequent alteration in sugar and hormone signaling and up-regulation of specific MYB transcription factors. This knowledge provides a new approach for bioengineering male sterility in crop plants.


Assuntos
Metabolismo dos Carboidratos/genética , Cucumis sativus/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/genética , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Floema/metabolismo , Floema/ultraestrutura , Proteínas de Plantas/genética , Pólen/genética , Pólen/ultraestrutura , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/metabolismo
13.
Theor Appl Genet ; 131(2): 449-460, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29134240

RESUMO

KEY MESSAGE: The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber. A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.


Assuntos
Cucumis sativus/genética , Genes de Plantas , Infertilidade das Plantas/genética , Mapeamento Cromossômico , Genes Recessivos , Genótipo , Pólen/genética , Polimorfismo de Nucleotídeo Único
14.
Plant Physiol ; 171(2): 1209-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208289

RESUMO

Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.


Assuntos
Cucumis sativus/fisiologia , Flores/fisiologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Cucumis sativus/anatomia & histologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Flores/anatomia & histologia , Flores/citologia , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Modelos Biológicos , Nitratos/metabolismo , Fósforo/metabolismo , Regiões Promotoras Genéticas/genética , Análise de Sequência de RNA , Fatores de Tempo , Transcriptoma/genética
15.
Plant Cell Physiol ; 56(11): 2271-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26412781

RESUMO

Plants predominantly show maternal transmission of mitochondrial DNA (mtDNA). One known exception is cucumber, in which the mtDNA is paternally inherited. However, the mechanisms regulating this unique mode of transmission are unclear. Here we monitored the amounts of mtDNA throughout the development of cucumber microspores into pollen and observed that mtDNA decreases in the vegetative cell, but persists in the generative cell that ultimately produces the sperm cells. We characterized the cucumber homolog (CsDPD1) of the Arabidopsis gene defective in pollen organelle DNA degradation 1 (AtDPD1), which plays a direct role in mtDNA degradation. CsDPD1 rescued an Arabidopsis AtDPD1 mutant, indicating the same function in both plants. Expression of CsDPD1 coincided with the decrease of mtDNA in pollen, except in the generative cell where both the expression of CsDPD1 and mtDNA levels remained high. Our cytological results confirmed that the persistence of mtDNA in the cucumber generative cell is consistent with its paternal transmission. Our molecular analyses suggest that protection of mtDNA in the generative cell may be the critical factor for paternal mtDNA transmission, rather than mtDNA degradation mediated by CsDPD1. Taken together, these findings indicate that a mechanism may protect paternal mtDNA from degradation and is likely to be the genetic basis of paternal mtDNA transmission.


Assuntos
Cucumis sativus/genética , DNA de Plantas/genética , Clonagem Molecular , Cucumis sativus/crescimento & desenvolvimento , DNA Mitocondrial/genética , Filogenia , Pólen/metabolismo , Sementes/metabolismo
16.
Plant Cell Physiol ; 56(7): 1339-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023108

RESUMO

Cuticular waxes play an important part in protecting plant aerial organs from biotic and abiotic stresses. In previous studies, the biosynthetic pathway of cuticular waxes and relative functional genes has been researched and understood; however, little is known in cucumber (Cucumis sativus L.). In this study, we cloned and characterized an AtWAX2 homolog, CsWAX2, in cucumber and found that it is highly expressed in the epidermis, where waxes are synthesized, while subcellular localization showed that CsWAX2 protein is localized to the endoplasmic reticulum (ER). The transcriptional expression of CsWAX2 was found to be induced by low temperature, drought, salt stress and ABA, while the ectopic expression of CsWAX2 in an Arabidopsis wax2 mutant could partially complement the glossy stem phenotype. Abnormal expression of CsWAX2 in transgenic cucumbers specifically affected both very long chain (VLC) alkanes and cutin biosynthesis. Furthermore, transgenic cucumber plants of CsWAX2 showed significant changes in pollen viability and fruit resistance to water loss and pathogens compared with the wild type. Collectively, these results indicated that CsWAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and the plant's response to biotic and abiotic stresses.


Assuntos
Cucumis sativus/genética , Proteínas de Plantas/genética , Pólen/genética , Ceras/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cucumis sativus/metabolismo , Secas , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Temperatura
17.
Theor Appl Genet ; 128(1): 25-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25358412

RESUMO

KEY MESSAGE: Comparative genetic mapping revealed the origin of Xishuangbanna cucumber through diversification selection after domestication. QTL mapping provided insights into the genetic basis of traits under diversification selection during crop evolution. The Xishuangbanna cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan (XIS), is a semi-wild landrace from the tropical southwest China with some unique traits that are very useful for cucumber breeding, such as tolerance to low light, large fruit size, heavy fruit weight, and orange flesh color in mature fruits. In this study, using 124 recombinant inbred lines (RILs) derived from the cross of the XIS cucumber with a cultivated cucumber inbred line, we developed a linkage map with 269 microsatellite (or simple sequence repeat) markers which covered 705.9 cM in seven linkage groups. Comparative analysis of orders of common marker loci or marker-anchored draft genome scaffolds among the wild (C. sativus var. hardwickii), semi-wild, and cultivated cucumber genetic maps revealed that the XIS cucumber shares major chromosomal rearrangements in chromosomes 4, 5, and 7 between the wild and cultivated cucumbers suggesting that the XIS cucumber originated through diversifying selection after cucumber domestication. Several XIS-specific minor structural changes were identified in chromosomes 1 and 6. QTL mapping with the 124 RILs in four environments identified 13 QTLs for domestication and diversifying selection-related traits including 2 for first female flowering time (fft1.1, fft6.1), 5 for mature fruit length (fl1.1, fl3.1, fl4.1, fl6.1, and fl7.1), 3 for fruit diameter (fd1.1, fd4.1, and fd6.1), and 3 for fruit weight (fw2.1, fw4.1, and fw6.1). Six of the 12 QTLs were consistently detected in all four environments. Among the 13 QTLs, fft1.1, fl1.1, fl3.1, fl7.1, fd4.1, and fw6.1 were major-effect QTLs for respective traits with each explaining at least 10 % of the observed phenotypic variations. Results from this study provide insights into the cytological and genetic basis of crop evolution leading to the XIS cucumber. The molecular markers associated with the QTLs should be useful in exploring the XIS cucumber genetic resources for cucumber breeding.


Assuntos
Aclimatação/genética , Mapeamento Cromossômico , Cucumis sativus/genética , Locos de Características Quantitativas , Cruzamento , China , Cromossomos de Plantas , Cucumis sativus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Ligação Genética , Repetições de Microssatélites , Fenótipo
18.
Physiol Plant ; 143(4): 344-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883253

RESUMO

Excessive application of phosphorus (P)-rich manures to agricultural lands often results in P-accumulation in soils leading to water pollution through runoffs and leaching. Use of suitable plant species that can extract and sequester excess P from soil into their biomass is an effective method of remediation of P-contaminated soils. Knowledge on the molecular responses of plants to high P-accumulation and tolerance is lacking. Therefore, a suppression subtractive hybridization (SSH) strategy was employed to identify and elucidate the pattern of gene expression related to P-tolerance and accumulation in cucumber (Cucumis sativus L.), a P-accumulator plant. RNA isolated from cucumber grown in high P was used for 'tester' cDNA synthesis and SSH library preparation. A total of 63 cDNAs were identified as showing upregulated expression in this plant in response to high P. No putative function could be assigned to 7 (11%) of the 63 upregulated high P-modulated genes and 11 expressed sequence tags (ESTs) (17%) did not match database entries. The remaining 45 ESTs were grouped into five functional classes. The majority of these ESTs belonged to three groups: 'metabolism', 'protein synthesis/degradation and signaling' and 'cell structure/cell wall'. Only six 'stress/defense'-related ESTs were identified from this library. The results of reverse northern blot analysis was further confirmed and validated through semi-quantitative RT-PCR carried out with representative ESTs identified in this study. The research reported here may contribute to a preliminary understanding of the high P-related gene expression in this P-accumulating plant.


Assuntos
Cucumis sativus/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Fósforo/metabolismo , Adaptação Fisiológica , Cucumis sativus/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , RNA de Plantas/genética , Análise de Sequência de DNA
19.
New Phytol ; 192(3): 590-600, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21801181

RESUMO

• Production of unisexual flowers is an important mechanism that promotes cross-pollination in angiosperms. We previously identified primordial anther-specific DNA damage and organ-specific ethylene perception responsible for the arrest of stamen development in female flowers, but little is known about how the two processes are linked. • To identify potential links between the two processes, we performed suppression subtractive hybridization (SSH) on cucumber (Cucumis sativus L.) stamens of male and female flowers at stage 6, with stamens at stage 5 of bisexual flowers as a control. • Among the differentially expressed genes, we identified an expressed sequence tag (EST) encoding a cucumber homolog to an Arabidopsis calcium-dependent nuclease (CAN), designated CsCaN. Full-length CsCaN cDNA and the respective genomic DNA sequence were cloned and characterized. The CsCaN protein exhibited calcium-dependent nuclease activity. CsCaN showed ubiquitous expression; however, increased gene expression was detected in the stamens of stage 6 female flowers compared with male flowers. As expected, CsCaN expression was ethylene inducible. It was of great interest that CsCaN was post-translationally modified. • This study demonstrated that CsCaN is a novel cucumber nuclease gene, whose DNase activity is regulated at multiple levels, and which could be involved in the primordial anther-specific DNA damage of developing female cucumber flowers.


Assuntos
Cálcio/farmacologia , Cucumis sativus/genética , Desoxirribonucleases/genética , Etilenos/farmacologia , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Clonagem Molecular , Cucumis sativus/citologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , DNA Complementar/genética , Desoxirribonucleases/metabolismo , Flores/citologia , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Hibridização de Ácido Nucleico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética
20.
Plant Physiol Biochem ; 49(5): 545-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411331

RESUMO

The aim of this study was to investigate the effects of IAA and ABA in the shoot-to-root regulation of the expression of the main Fe-stress physiological root responses in cucumber plants subjected to shoot Fe functional deficiency. Changes in the expression of the genes CsFRO1, CsIRT1, CsHA1 and CsHA2 (coding for Fe(III)-chelate reductase (FCR), the Fe(II) transporter and H+-ATPase, respectively) and in the enzyme activity of FCR and the acidification capacity were measured. We studied first the ability of exogenous applications of IAA and ABA to induce these Fe-stress root responses in plants grown in Fe-sufficient conditions. The results showed that IAA was able to activate these responses at the transcriptional and functional levels, whereas the results with ABA were less conclusive. Thereafter, we explored the role of IAA in plants with or without shoot Fe functional deficiency in the presence of two types of IAA inhibitors, affecting either IAA polar transport (TIBA) or IAA functionality (PCIB). The results showed that IAA is involved in the regulation at the transcriptional and functional levels of both Fe root acquisition (FCR, Fe(II) transport) and rhizosphere acidification (H+-ATPase), although through different, and probably complementary, mechanisms. These results suggest that IAA is involved in the shoot-to-root regulation of the expression of Fe-stress physiological root responses.


Assuntos
Cucumis sativus/enzimologia , Ácidos Indolacéticos/metabolismo , Ferro/metabolismo , Raízes de Plantas/enzimologia , Brotos de Planta/fisiologia , Transporte Biológico , Ácido Clofíbrico/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , FMN Redutase/análise , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Fisiológico , Transcrição Gênica , Ácidos Tri-Iodobenzoicos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA