Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Orphanet J Rare Dis ; 15(1): 298, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092611

RESUMO

BACKGROUND: The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly affects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC deficient patients, thus seeking to establish possible genotype-phenotype correlations. RESULTS: The mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, five patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC deficiency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzymatic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut-off value for primary PDC deficiency. Concerning the clinical features, all patients displayed psychomotor retardation/developmental delay, the severity of which seems to correlate with the type and localization of the mutation carried by the patient. The therapeutic options essentially include the administration of a ketogenic diet and supplementation with thiamine, although arginine aspartate intake revealed to be beneficial in some patients. Moreover, in silico analysis of the missense mutations present in this PDC deficient population allowed to envisage the molecular mechanism underlying these pathogenic variants. CONCLUSION: The identification of the disease-causing mutations, together with the functional and structural characterization of the mutant protein variants, allow to obtain an insight on the severity of the clinical phenotype and the selection of the most appropriate therapy.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mutação/genética , Portugal , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
2.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29445841

RESUMO

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Assuntos
Substituição de Aminoácidos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Dobramento de Proteína , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
3.
J Inherit Metab Dis ; 38(3): 391-403, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25526709

RESUMO

Pyruvate oxidation defects (PODs) are among the most frequent causes of deficiencies in the mitochondrial energy metabolism and represent a substantial subset of classical mitochondrial diseases. PODs are not only caused by deficiency of subunits of the pyruvate dehydrogenase complex (PDHC) but also by various disorders recently described in the whole pyruvate oxidation route including cofactors, regulation of PDHC and the mitochondrial pyruvate carrier. Our own patients from 2000 to July 2014 and patients identified by a systematic survey of the literature from 1970 to July 2014 with a pyruvate oxidation disorder and a genetically proven defect were included in the study (n=628). Of these defects 74.2% (n=466) belong to PDHC subunits, 24.5% (n=154) to cofactors, 0.5% (n=3) to PDHC regulation and 0.8% (n=5) to mitochondrial pyruvate import. PODs are underestimated in the field of mitochondrial diseases because not all diagnostic centres include biochemical investigations of PDHC in their routine analysis. Cofactor and transport defects can be missed, if pyruvate oxidation is not measured in intact mitochondria routinely. Furthermore deficiency of the X-chromosomal PDHA1 can be biochemically missed depending on the X-inactivation pattern. This is reflected by an increasing number of patients diagnosed recently by genetic high throughput screening approaches. PDHC deficiency including regulation and import affect mainly the glucose dependent central and peripheral nervous system and skeletal muscle. PODs with combined enzyme defects affect also other organs like heart, lung and liver. The spectrum of clinical presentation of PODs is still expanding. PODs are a therapeutically interesting group of mitochondrial diseases since some can be bypassed by ketogenic diet or treated by cofactor supplementation. PDHC kinase inhibition, chaperone therapy and PGC1α stimulation is still a matter of further investigations.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Complexo Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfato/metabolismo , Ácido Tióctico/metabolismo , Metabolismo Energético , Feminino , Humanos , Proteínas Ferro-Enxofre/classificação , Masculino , Oxirredução , Complexo Piruvato Desidrogenase/classificação , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina Pirofosfato/classificação , Ácido Tióctico/classificação
4.
J Inherit Metab Dis ; 37(4): 577-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789339

RESUMO

Thiamine, in the form of thiamine pyrophosphate, is a cofactor for a number of enzymes which play important roles in energy metabolism. Although dietary thiamine deficiency states have long been recognised, it is only relatively recently that inherited defects in thiamine uptake, activation and the attachment of the active cofactor to target enzymes have been described, and the underlying genetic defects identified. Thiamine is transported into cells by two carriers, THTR1 and THTR2, and deficiency of these results in thiamine-responsive megaloblastic anaemia and biotin-responsive basal ganglia disease respectively. Defective synthesis of thiamine pyrophosphate has been found in a small number of patients with episodic ataxia, delayed development and dystonia, while impaired transport of thiamine pyrophosphate into the mitochondrion is associated with Amish lethal microcephaly in most cases. In addition to defects in thiamine uptake and metabolism, patients with pyruvate dehydrogenase deficiency and maple syrup urine disease have been described who have a significant clinical and/or biochemical response to thiamine supplementation. In these patients, an intrinsic structural defect in the target enzymes reduces binding of the cofactor and this can be overcome at high concentrations. In most cases, the clinical and biochemical abnormalities in these conditions are relatively non-specific, and the range of recognised presentations is increasing rapidly at present as new patients are identified, often by genome sequencing. These conditions highlight the value of a trial of thiamine supplementation in patients whose clinical presentation falls within the spectrum of documented cases.


Assuntos
Proteínas de Membrana Transportadoras/genética , Deficiência de Tiamina/genética , Tiamina/metabolismo , Animais , Transporte Biológico/genética , Humanos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfoquinase/deficiência , Tiamina Pirofosfoquinase/genética , Deficiência de Tiamina/metabolismo
5.
Dev Med Child Neurol ; 54(5): 472-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22142326

RESUMO

Pyruvate dehydrogenase complex (PDHC) deficiency causes encephalomyopathies, of which there are four major categories: (1) neonatal encephalopathy with lactic acidosis; (2) an early infantile form, which (3) at times resembles Leigh syndrome; and (4) a later-onset form. Long-term clinical and radiological follow-up is still incompletely elucidated. We report a 12-year-old male with intermittent-relapsing PDHC deficiency who presented with three typical acute episodes of metabolic decompensation over 7 years. Neuroimaging showed reversible signal abnormalities in the basal ganglia, inferior olivary nuclei, periaqueductal grey matter, and dentate nuclei, with evidence of lactate on magnetic resonance spectroscopy. Molecular analysis of PDH1A revealed a novel hemizygous c.1045G>A mutation, predicting a p.A349T missense mutation. He was treated with thiamine supplementation and, while on this regimen, he experienced several intercurrent febrile episodes without neurological compromise. This case report stresses the importance of performing neuroimaging during acute clinical episodes because brain lesions in PDHC deficiency may be transient and reversible, and false-negative results may mislead the diagnosis and delay the treatment.


Assuntos
Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Alelos , Encéfalo/patologia , Criança , Análise Mutacional de DNA , Economia , Hemizigoto , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mutação de Sentido Incorreto/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Recidiva , Tiamina/uso terapêutico
6.
J Inherit Metab Dis ; 33 Suppl 3: S315-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20652410

RESUMO

We present a 32-year-old patient who, from age 7 months, developed photophobia, left-eye ptosis and progressive muscular weakness. At age 7 years, she showed normal psychomotor development, bilateral ptosis and exercise-induced weakness with severe acidosis. Basal blood and urine lactate were normal, increasing dramatically after effort. PDHc deficiency was demonstrated in muscle and fibroblasts without detectable PDHA1 mutations. Ketogenic diet was ineffective, however thiamine gave good response although bilateral ptosis and weakness with acidosis on exercise persisted. Recently, DLD gene analysis revealed a homozygous missense mutation, c.1440 A>G (p.I480M), in the interface domain. Both parents are heterozygous and DLD activity in the patient's fibroblasts is undetectable. The five patients that have been reported with DLD-interface mutations suffered fatal deteriorations. Our patient's disease is milder, only myopathic, more similar to that due to mutation p.G229C in the NAD(+)-binding domain. Two of the five patients presented mutations (p.D479V and p.R482G) very close to the present case (p.I480M). Despite differing degrees of clinical severity, all three had minimal clues to DLD deficiency, with occasional minor increases in α-ketoglutarate and branched-chain amino acids. In the two other patients, hypertrophic cardiomyopathy was a significant feature that has been attributed to moonlighting proteolytic activity of monomeric DLD, which can degrade other mitochondrial proteins, such as frataxin. Our patient does not have cardiomyopathy, suggesting that p.I480M may not affect the DLD ability to dimerize to the same extent as p.D479V and p.R482G. Our patient, with a novel mutation in the DLD interface and mild clinical symptoms, further broadens the spectrum of this enzyme defect.


Assuntos
Acidose Láctica/genética , Doença da Urina de Xarope de Bordo/genética , Debilidade Muscular/genética , Mutação de Sentido Incorreto , Ácido Tióctico/análogos & derivados , Acidose Láctica/diagnóstico , Acidose Láctica/tratamento farmacológico , Acidose Láctica/enzimologia , Acidose Láctica/fisiopatologia , Adulto , Sequência de Aminoácidos , Sequência de Bases , Biomarcadores/sangue , Biomarcadores/urina , Blefaroptose/diagnóstico , Blefaroptose/enzimologia , Blefaroptose/genética , Células Cultivadas , Análise Mutacional de DNA , Suplementos Nutricionais , Feminino , Predisposição Genética para Doença , Hereditariedade , Heterozigoto , Homozigoto , Humanos , Ácido Láctico/sangue , Ácido Láctico/urina , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Doença da Urina de Xarope de Bordo/enzimologia , Doença da Urina de Xarope de Bordo/fisiopatologia , Dados de Sequência Molecular , Força Muscular/genética , Debilidade Muscular/diagnóstico , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/enzimologia , Debilidade Muscular/fisiopatologia , Linhagem , Fenótipo , Fotofobia/diagnóstico , Fotofobia/enzimologia , Fotofobia/genética , Estrutura Terciária de Proteína , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Espanha , Tiamina/uso terapêutico , Ácido Tióctico/química , Ácido Tióctico/deficiência , Ácido Tióctico/genética , Resultado do Tratamento
7.
J Inherit Metab Dis ; 32 Suppl 12009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19639391

RESUMO

Pyruvate dehydrogenase (PDH) is a crucial multienzyme system linking glycolysis to the tricarboxylic acid cycle by catalysing the decarboxylation of pyruvate to acetyl-CoA. Deficiency in pyruvate dehydrogenase is most commonly secondary to mutations in the X-linked PDHA1 gene encoding the E1 alpha subunit. There is a wide range of clinical presentations from severe neonatal lactic acidosis to chronic encephalopathy (Leigh syndrome). In recent years, a small subset of patients was recognized with less severe involvement, presenting initially only with intermittent symptoms, mainly of ataxia. Most of these patients remain stable for a number of years before developing progressive neurological deterioration around puberty at the latest. There does not appear to be a reliable correlation between genotype, phenotype, or enzyme activity. This makes counselling in a clinical setting challenging. We report a case with a previously known common mutation in PDHA1 (R263G) with an excellent outcome at 18 years of age. Previous patients with this mutation have presented with mental retardation and/or Leigh syndrome, while our patient's clinical outcome is exceptional. He is cognitively normal and has normal brain MRI. His management includes a stringent carbohydrate-free diet, as well as supplementation with thiamine, carnitine and vitamin E. This case further broadens the clinical spectrum, including now an example of a cognitively normal adult with PDH deficiency.


Assuntos
Cognição , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adolescente , Análise Mutacional de DNA , Dieta com Restrição de Carboidratos , Suplementos Nutricionais , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/psicologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Resultado do Tratamento
8.
Eur J Pediatr ; 168(1): 17-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18398624

RESUMO

UNLABELLED: The pyruvate dehydrogenase complex (PDHc) is an intramitochondrial multienzyme system, which plays a key role in aerobic glucose metabolism by catalysing the oxidative decarboxylation of pyruvate to acetyl-CoA. Genetic defects in the PDHc lead to lactic acidemia and neurological abnormalities. In the majority of the cases, the defect appears to reside in the E(1)alpha subunit, the first catalytic component of the complex. The report is on a 6-year-old Portuguese boy with mild neurological involvement and low PDHc activity with absence of E1alpha on immunoblotting analysis. Molecular studies showed a novel and "de novo" mutation in the PDHA1 gene, R253G. Treatment with arginine aspartate showed complete clinical and biochemical recovery. We hypothesise that arginine aspartate acts as a chemical or pharmacological chaperone, and suggest amino acid supplementation as a possible therapy in PDHA1 mutations with mild phenotypes. CONCLUSION: our results encourage the use of amino acid supplementation to overcome the metabolic/biochemical changes induced by PDHA1 gene specific mutations associated with mild PDHc phenotypes.


Assuntos
Arginina/uso terapêutico , Ácido Aspártico/uso terapêutico , Mutação Puntual/genética , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Western Blotting , Criança , Análise Mutacional de DNA , Expressão Gênica/genética , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples/genética
9.
Mol Genet Metab ; 93(4): 381-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18206410

RESUMO

We determined the ability of self-complementary adeno-associated virus (scAAV) vectors to deliver and express the pyruvate dehydrogenase E1alpha subunit gene (PDHA1) in primary cultures of skin fibroblasts from 3 patients with defined mutations in PHDA1 and 3 healthy subjects. Cells were transduced with scAAV vectors containing the cytomegalovirus promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a vector:cell ratio of 200. Transgene expression was measured 72h later. The transduction efficiency of scAAV2 and scAAV6 vectors was 3- to 5-fold higher than that of the other serotypes, which were subsequently used to transduce fibroblasts with wild-type PDHA1 cDNA under the control of the chicken beta-action (CBA) promoter at a vector:cell ratio of 1000. Total PDH-specific activity and E1alpha protein expression were determined 10 days post-transduction. Both vectors increased E1alpha expression 40-60% in both control and patient cells, and increased PDH activity in two patient cell lines. We also used dichloroacetate (DCA) to maximally activate PDH through dephosphorylation of E1alpha. Exposure for 24h to 5mM DCA increased PDH activity in non-transduced control (mean 37% increase) and PDH deficient (mean 44% increase) cells. Exposure of transduced patient fibroblasts to DCA increased PDH activity up to 90% of the activity measured in untreated control cells. DCA also increased expression of E1alpha protein and, to variable extents, that of other components of the PDH complex in both non-transduced and transduced cells. These data suggest that a combined gene delivery and pharmacological approach may hold promise for the treatment of PDH deficiency.


Assuntos
Dependovirus/genética , Ácido Dicloroacético/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/terapia , Células Cultivadas , Fibroblastos , Humanos , Piruvato Desidrogenase (Lipoamida)/biossíntese , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Transdução Genética
10.
Hum Mutat ; 22(6): 496-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14635113

RESUMO

In a patient with fatal neonatal lactic acidosis due to pyruvate dehydrogenase deficiency, the only potential mutation detected was c.888C>G in PDHA1, the gene for the E1alpha subunit of the complex. This would result in a substitution of glutamate for aspartate (D296E). Pathogenicity of this minor alteration in amino acid sequence was demonstrated by expression studies. By comparing the mutant sequence with the known structures of the E1 components of pyruvate dehydrogenase and the closely related branched chain alpha-ketoacid dehydrogenase, an explanation for the profound consequences of the mutation can be proposed.


Assuntos
Substituição de Aminoácidos/genética , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Ácido Aspártico/genética , Domínio Catalítico/genética , Análise Mutacional de DNA , DNA Complementar/química , DNA Complementar/genética , Evolução Fatal , Feminino , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Ácido Glutâmico/genética , Humanos , Recém-Nascido , Masculino , Modelos Moleculares , Mutação , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia
11.
Magn Reson Imaging ; 17(6): 939-44, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10402601

RESUMO

The purpose of this study was the non-invasive quantitative determination by proton MR Spectroscopy (1H MRS) of alterations in cerebral metabolism in a 19-month-old male infant with severe global developmental delay caused by a Pyruvate Dehydrogenase Complex (PDHC) deficiency due to a mutation at the thiamine binding site. Two investigations were performed at different CSF thiamine concentrations to assess the effect of thiamine supplementation. 1H MR spectra were collected at different echo times (20-270 ms) from a voxel located in the striatum; spectroscopic imaging was done on a larger region including occipital white matter. The tissue levels of N-acetylaspartate and choline were in the normal range, while creatine appeared elevated. Abnormally high lactate and alanine signals were observed both in and outside the striatum; the levels of these metabolites were higher during the second measurement at a lower thiamine concentration. Abnormal cerebral levels of alanine have only been described once before in PDHC deficiency. The 1H MRS profile of this patient reflects the diversity of brain metabolite alterations in patients with this genetically heterogeneous disease.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Alanina/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Sítios de Ligação , Colina/metabolismo , Corpo Estriado/metabolismo , Creatina/metabolismo , Humanos , Lactente , Ácido Láctico/metabolismo , Masculino , Mutação , Lobo Occipital/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina/administração & dosagem , Tiamina/metabolismo , Tiamina/uso terapêutico
12.
Pediatr Neurol ; 13(4): 327-32, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8771169

RESUMO

We describe an infant girl who presented at age 4 1/2 months with developmental delay, infantile spasms, hypotonia, and elevated lactate levels in the blood and cerebrospinal fluid. She had minor dysmorphic features. Muscle phosphorus magnetic resonance spectroscopy demonstrated reduced phosphocreatine and increased inorganic phosphate, suggesting a defect in oxidative energy metabolism. Pyruvate dehydrogenase activity in cultured fibroblasts was reduced (0.35 nmol/mg mitochondrial protein/min; controls 0.7-1.1 nmol/mg mitochondrial protein/min). Immunoblotting demonstrated a reduced amount of pyruvate dehydrogenase (PDH) E1 alpha immunoreactive protein with normal amounts of E2 protein. Single-strand conformational polymorphism analysis of E1 alpha cDNA prepared from fibroblasts disclosed an abnormal migration pattern, suggesting heterozygosity for a mutant allele. Dideoxy-fingerprinting of PCR-amplified genomic DNA was used to localize the mutation to exon 10. Direct sequencing demonstrated a novel 13-bp insertion mutation that would lead to premature termination of the protein product. This study further extends the allelic heterogeneity underlying PDH deficiency. The demonstration of bioenergetic abnormalities in muscle emphasizes that hypotonia in PDH deficiency may have combined peripheral and central etiologies. The results further suggest that the association of cerebral dysgenesis with lactic acidemia in females may be a useful clue to PDH deficiency.


Assuntos
Acidose Láctica/fisiopatologia , Encéfalo/anormalidades , Ligação Genética , Mutação , Fragmentos de Peptídeos/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Cromossomo X , Acidose Láctica/enzimologia , Acidose Láctica/genética , Sequência de Bases , DNA/genética , Metabolismo Energético/fisiologia , Feminino , Humanos , Lactente , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Músculos/metabolismo , Fósforo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/sangue
13.
J Nutr ; 125(6 Suppl): 1753S-1757S, 1995 06.
Artigo em Inglês | MEDLINE | ID: mdl-7782940

RESUMO

The mammalian pyruvate dehydrogenase complex (PDC) is subject to both short-term (product inhibition and covalent modification) and long-term (increases in total activity and protein mass) regulation mediated by dietary and hormonal treatments. Recent advances in the isolation and characterization of the complementary DNAs as well as genes encoding several components of mammalian PDC have facilitated studies concerning long-term regulation of PDC. Analyses of the promoter-regulatory regions of the two human PDC genes show characteristics of both facultative and housekeeping gene promoters, indicating complex transcriptional regulation. Deficiency of PDC activity causes a wide range of neurological disabilities. A spectrum of genetic defects in PDC components has been reported; however, the most frequent defects are associated with the pyruvate dehydrogenase component. Heterogeneity in pyruvate dehydrogenase deficiency has been shown to occur at both protein and messenger RNA levels, and several mutations in pyruvate dehydrogenase have been identified. Dietary treatments such as ketogenic diets and vitamin supplements as well as dichloroacetate treatment have been utilized to treat PDC deficiency, but their efficacy requires further evaluation.


Assuntos
Regulação Enzimológica da Expressão Gênica , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Humanos , Biologia Molecular , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA