Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 34(5): 469-483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38166523

RESUMO

The modulatory role of primrose oil (PO) supplementation enriched with γ-linolenic acid and D/L-alpha tocopherol acetate against a carbon tetrachloride (CCl4)-induced liver damage model was assessed in this study. Twenty male Albino rats were divided into four groups. The control group received corn oil orally. The PO group received 10 mg/kg P O orally. The CCl4 group received 2 mL/kg CCl4 orally and PO/CCl4 group; received PO and 2 mL/kg CCl4 orally. The relative liver weight was recorded. Serum liver enzymes, hepatic malondialdehyde (MDA), hepatic reduced glutathione (GSH) and the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) were assessed. The binding affinities of γ-linolenic acid and D/L-alpha tocopherol constituents with IL-1ß, IL-6 and TNF-α were investigated using molecular docking simulations. Histopathological and electron microscopic examinations of the liver were performed. The results indicated that CCl4 elevated serum liver enzyme and hepatic MDA levels, whereas GSH levels were diminished. The upregulation of IL-1ß, IL-6, and TNF-α gene expressions were induced by CCl4 treatment. The PO/CCl4-treated group showed amelioration of hepatic injury biomarkers and oxidative stress. Restoration of histopathological and ultrastructural alterations while downregulations the gene expressions of TNF-α, IL1-ß and IL-6 were observed. In conclusion, evening primrose oil enriched with γ-linolenic acid and D/L-alpha tocopherol acetate elicited a potential amelioration of CCl4-induced hepatic toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Oenothera biennis , Óleos de Plantas , Ácido gama-Linolênico , Animais , Masculino , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Ácido gama-Linolênico/farmacologia , Oenothera biennis/química , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Estresse Oxidativo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Tetracloreto de Carbono/toxicidade , Interleucina-6/metabolismo , Ratos , Ácidos Linoleicos/farmacologia , Antioxidantes/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
2.
Nutrients ; 13(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835956

RESUMO

Chronic liver diseases are multifactorial and the need to develop effective therapies is high. Recent studies have shown the potential of ameliorating liver disease progression through protection of the liver endothelium. Polyamine spermidine (SPD) is a caloric restriction mimetic with autophagy-enhancing properties capable of prolonging lifespan and with a proven beneficial effect in cardiovascular disease in mice and humans. We evaluated the use of dietary supplementation with SPD in two models of liver disease (CCl4 and CDAAH diet). We analyzed the effect of SPD on endothelial dysfunction in vitro and in vivo. C57BL/6J mice were supplemented with SPD in the drinking water prior and concomitantly with CCl4 and CDAAH treatments. Endothelial autophagy deficient (Atg7endo) mice were also evaluated. Liver tissue was used to evaluate the impact of SPD prophylaxis on liver damage, endothelial dysfunction, oxidative stress, mitochondrial status, inflammation and liver fibrosis. SPD improved the endothelial response to oxidative injury in vitro and improved the liver endothelial phenotype and protected against liver injury in vivo. SPD reduced the overall liver oxidative stress and improved mitochondrial fitness. The absence of benefits in the Atg7endo mice suggests an autophagy-dependent effect of SPD. This study suggests SPD diet supplementation in early phases of disease protects the liver endothelium from oxidative stress and may be an attractive approach to modify the chronic liver disease course and halt fibrosis progression.


Assuntos
Suplementos Nutricionais , Endotélio/patologia , Fígado/patologia , Substâncias Protetoras/farmacologia , Espermidina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Estresse Fisiológico/efeitos dos fármacos
3.
Life Sci ; 285: 119983, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34599938

RESUMO

BACKGROUNDS: Modern dietary habits have been associated with Nonalcoholic Steatohepatitis (NASH). Curcumin is a natural herbal found to suppress cellular oxidative states and could be beneficial in NASH. This study investigates the effect of curcumin in an animal model of NASH. MATERIALS AND METHODS: Fifty rats were allocated into five groups. Control, High Fat Diet (HFD), curcumin prophylactic (CP) and therapeutic (CT) groups. HFD regimen was given for 16 weeks. Curcumin was given along with HFD (prophylactic) or after establishment of the model for two weeks (therapeutic). Livers and blood samples were harvested for histological, biochemical, and molecular studies. KEY FINDINGS: Livers from HFD groups showed vascular, inflammatory, cellular degenerative and fibrotic changes. The hepatic damage was reflected by the increased serum liver enzymes. HFD groups showed excessive fibrotic change. Interestingly, curcumin administration as prophylactic or therapeutic significantly preserved and/or restored liver structure. This was evidenced by the normalization of the liver enzymes, preservation and/or reversibility of cellular changes and the decrease of the stage of fibrosis. Nuclear factor E2-related factor 2 gene (Nrf2) expression showed no changes in the HFD groups, however it showed upregulation in curcumin treated groups. Thus, the protective and therapeutic effect of curcumin could be induced through upregulation of the Nrf2 gene. Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers. SIGNIFICANCE: Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers.


Assuntos
Curcumina/uso terapêutico , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Colágeno/metabolismo , Curcumina/administração & dosagem , Curcumina/farmacologia , Dieta Hiperlipídica , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Microscopia Eletrônica , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ratos , Ratos Sprague-Dawley
4.
Pak J Pharm Sci ; 34(6): 2101-2107, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35034870

RESUMO

To investigate effect and mechanism of Ziqi Ruangan Decoction (ZQRGD) on hepatic fibrosis in rats. Rats were randomly assigned to blank group, model group, colchicine group, ZQRGD high-dose group, ZQRGD middle-dose group, and ZQRGD low-dose group. All groups except group A were intraperitoneally injected with 40% CCl4/olive oil for 8 weeks; group C was then given intragastric colchicine administration. Groups D, E, and F were intragastrically dosed with ZQRGD. Compared with the colchicine group, the superoxide dismutase (SOD) activity of each dose group of ZQRGD significantly increased. TNF-α and IL-6 concentration significantly decreased in each drug intervention group, while these significantly decreased in the high-dose and medium-dose ZQRGD groups. The expression of α-SMA and collagen I significantly decreased in the drug treatment group compared with the model group, as did the expression of PI3K, AKT, and mTOR. Ziqi Ruangan Decoction had a favorable anti-liver fibrosis effect and the mechanism is related to anti-oxidative stress, anti-inflammation, the inhibition of the PI3K/Akt/mTOR signaling pathway, and the inhibition of hepatic stellate cell activation.


Assuntos
Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Actinas/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/ultraestrutura , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/ultraestrutura , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cell Physiol ; 236(5): 4024-4035, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33151563

RESUMO

Organic selenium has antioxidation and disease treatment effects. To explore the mechanisms of how methionine selenium alleviates necroptosis in the liver and whether this process is related to microRNA (miRNA) and the mitogen-activated protein kinase (MAPK) pathway, an animal model of methionine selenium and the lipopolysaccharide (LPS) interaction was established. The morphology, inflammatory factor (tumor necrosis factor-α [TNF-α]), necroptosis-related genes (RIP1, RIP3, MLKL, and caspase 8), MAPK pathway-related genes (JNK, ERK, and p38, p-JNK, p-ERK, and p-p38), gga-miR-155, TRAF3 (predicted target of gga-miR-155), and oxidative stress-related indicators (SOD, MDA, CAT, GSH, and GSH-Px) were analyzed from the perspective of the miR-155/TRAF3/MAPK axis to elucidate the mechanism of methionine selenium on the LPS-induced necroptosis mechanism in the chicken liver. The current results suggested that methionine selenium antagonizes oxidative stress, inflammation, and the MAPK pathway, thereby antagonizing the occurrence of necroptosis through multiple mechanisms. At the same time, methionine selenium affects miR-155/TRAF3/MAPK signaling, reduces miR-155 expression, and upregulates TRAF3 expression to inhibit necroptosis. This information provided new ideas and a theoretical basis for the practical application of methionine selenium, and it also enriched the study of miRNAs in birds and provided a reference for comparative medicine.


Assuntos
Galinhas/genética , Fígado/metabolismo , Metionina/farmacologia , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Necroptose/genética , Selênio/farmacologia , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Sequência de Bases , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , MicroRNAs/genética , Necroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator 3 Associado a Receptor de TNF/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Br J Nutr ; 125(5): 481-493, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32718379

RESUMO

The present study investigated the influence of berberine (BBR) supplementation in normal and high-lipid (HL) diets on lipid metabolism and accumulation in black sea bream (Acanthopagrus schlegelii). BBR was supplemented at 50 mg/kg to control (Con, 11·1 % crude lipid) and high-lipid (HL, 20·2 % crude lipid) diets and named as ConB and HLB, respectively. After the 8-week feeding trial, fish body length and specific growth rate were significantly reduced by HL diets (P < 0·05). Muscle and whole-body crude lipid contents were significantly influenced by both BBR supplementation and dietary lipid level. Fish fed the HLB diet had significantly lower serum TAG, LDL-cholesterol contents and alanine aminotransferase activity compared with the HL group. The HL group presented vast lipid accumulation in the liver, and hypertrophied hepatocytes along with large lipid droplets, and translocation of nuclear to the cell periphery. These abnormalities in black sea bream were alleviated in the HLB group. BBR supplementation in the HL diet significantly down-regulated the hepatic expression levels of acetyl-CoA carboxylase α, sterol regulatory element-binding protein-1, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and pparγ, whereas the lipoprotein lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1a expression levels were significantly up-regulated. However, the expression levels of these genes showed opposite trends in muscle (except for pparγ). In conclusion, dietary BBR supplementation in the HL diet reduced hepatic lipid accumulation by down-regulating lipogenesis gene expression and up-regulating lipolysis gene expression, and it increased muscle lipid contents with opposite trends of the mechanism observed in the liver.


Assuntos
Berberina/administração & dosagem , Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Músculos/metabolismo , Dourada/metabolismo , Animais , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/genética , Lipólise/genética , Fígado/enzimologia , Fígado/ultraestrutura , Músculos/química , Dourada/crescimento & desenvolvimento
7.
J Cell Physiol ; 236(5): 4050-4065, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33174204

RESUMO

Arsenic is an environmental toxicant. Its overdose can cause liver damage. Autophagy has been reported to be involved in arsenite (iAs3+ ) cytotoxicity and plays a dual role in cell proliferation and cell death. However, the effect and molecular regulative mechanisms of iAs3+ on autophagy in hepatocytes remains largely unknown. Here, we found that iAs3+ exposure lead to hepatotoxicity by inducing autophagosome and autolysosome accumulation. On the one hand, iAs3+ promoted autophagosome synthesis by inhibiting E2F1/mTOR pathway in L-02 human hepatocytes. On the other, iAs3+ blocked autophagosome degradation partially via suppressing the expression of INPP5E and Rab7 as well as impairing lysosomal activity. More importantly, autophagosome and autolysosome accumulation induced by iAs3+ increased the protein level of E2F7a, which could further inhibit cell viability and induce apoptosis of L-02 cells. The treatment of Ginkgo biloba extract (GBE) effectively reduced autophagosome and autolysosome accumulation and thus alleviated iAs3+ -induced hepatotoxicity. Moreover, GBE could also protect lysosomal activity, promote the phosphorylation level of E2F1 (Ser364 and Thr433) and Rb (Ser780) as well as suppress the protein level of E2F7a in iAs3+ -treated L-02 cells. Taken together, our data suggested that autophagosome and autophagolysosome accumulation play a critical role for iAs3+ -induced hepatotoxicity, and GBE is a promising candidate for intervening iAs3+ induced liver damage by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity.


Assuntos
Arsenitos/toxicidade , Autofagia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F7/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ginkgo biloba , Humanos , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos
8.
Oxid Med Cell Longev ; 2020: 7680276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922654

RESUMO

The effects of selenium nanoparticles (SeNPs) on the antioxidant capacity in Sprague-Dawley (SD) rats were investigated. The rats were given intragastric administration of an SeNP suspension at doses of 0, 2, 4, and 8 mg Se/kg BW for two weeks. The antioxidant capacity in serum and organic tissues (liver, heart, and kidney) and the gene expression levels of glutathione peroxidase 1 (GPX1) and glutathione peroxidase 4 (GPX4) in the liver were measured. Buffalo rat liver (BRL) cell lines were further constructed to explore the cytotoxicity mechanism induced by SeNPs through the determination of antioxidant capacity; cell activity; apoptosis; and Caspase-3, Caspase-8, and Caspase-9 family activities. The results showed that SeNP administration over 4.0 mg Se/kg BW decreased the antioxidant capacities in the serum, liver, and heart and downregulated mRNA expression of GPX1 and GPX4 in the liver. The BRL cell line experiments showed that treatment with over 24 µM SeNPs decreased the viability of the cells and damaged the antioxidant capacity. Flow cytometry analysis showed that decreased cell viability induced by SeNPs is mainly due to apoptosis, rather than cell necrosis. Caspase-3 and Caspase-8 activities were also increased when BRL cells were treated with 24 µM and 48 µM SeNPs. Taken together, a nonlethal level of SeNPs could impair the antioxidant capacity in serum and organic tissues of rats, and the liver is the most sensitive to the toxicity of SeNPs. A pharmacological dose of SeNPs could lead to cytotoxicity and induce cell death through apoptosis and extrinsic pathways contributing to SeNP-induced apoptosis in BRL cells.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Nanopartículas Metálicas/química , Selênio/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Masculino , Nanopartículas Metálicas/ultraestrutura , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Glutationa Peroxidase GPX1
9.
Microsc Microanal ; 26(5): 997-1006, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32782033

RESUMO

Nonalcoholic fatty liver disease (NAFLD) represents a hepatic manifestation of metabolic syndrome. The aim of this study was to examine the effect of betaine on ultrastructural changes in the mouse liver with methionine- and choline-deficient (MCD) diet-induced NAFLD. Male C57BL/6 mice were divided into groups: Control-fed with standard chow, BET-standard chow supplemented with betaine (1.5% w/v drinking water), MCD-fed with MCD diet, and MCD + BET-MCD diet with betaine supplementation for 6 weeks. Liver samples were taken for pathohistology and transmission electron microscopy. The MCD diet-induced steatosis, inflammation, and balloon-altered hepatocytes were alleviated by betaine. MCD diet induced an increase in mitochondrial size versus the control group (p < 0.01), which was decreased in the betaine-treated group. In the MCD diet-fed group, the total mitochondrial count decreased versus the control group (p < 0.01), while it increased in the MCD + BET group versus MCD (p < 0.01). Electron microscopy showed an increase in the number of autophagosomes in the MCD and MCD + BET group versus control, and a significant difference in autophagosomes number was detected in the MCD + BET group by comparison with the MCD diet-treated group (p < 0.05). Betaine decreases the number of enlarged mitochondria, alleviates steatosis, and increases the number of autophagosomes in the liver of mice with NAFLD.


Assuntos
Betaína/farmacologia , Colina/metabolismo , Dieta , Suplementos Nutricionais , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Colágeno , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Appl Toxicol ; 40(12): 1622-1635, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32638414

RESUMO

Cantharidin (CTD), an important active compound derived from the traditional Chinese medicine Mylabris (also called Banmao), has been used in the treatment of diseases such as tumors and dermatosis. However, Mylabris has been shown to induce hepatotoxicity in clinical practice and animal experiments, limiting its use. Further, a detailed mechanism underlying CTD-induced hepatotoxicity has not been determined. In the present study, we aimed to explore the effect of endoplasmic reticulum stress (ERS), autophagy, and apoptosis on CTD-induced hepatotoxicity. We found that CTD could inhibit the proliferation of LO2 cells; increase alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and malondialdehyde levels; and reduce glutathione peroxidase and superoxide dismutase activities. Western blotting showed that low concentrations of CTD induced the expressions of ERS-related proteins [GRP78, ATF4, PERK, p-PERK, XBP1-1 s, and CHOP], but high concentrations of CTD inhibited their expressions. Furthermore, high concentrations of CTD activated autophagy (LC3, Beclin-1, Atg3, Atg4A, Atg4B, and Atg7), induced the expressions of apoptotic proteins (Bax/Bcl-2 and caspase-3), and increased LO2 toxicity. Taken together, these results indicated that CTD can induce LO2 cytotoxicity by inhibiting ERS and inducing autophagy and apoptosis, which provides a scientific basis for CTD-induced hepatotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cantaridina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
11.
J Cell Mol Med ; 24(13): 7201-7213, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410294

RESUMO

Non-alcoholic fatty liver disease is a public health problem worldwide associated with high morbidity and hepatic steatosis, but no effective therapeutic interventions. Magnesium isoglycyrrhizinate (MGIG), a derivative of an active component of Glycyrrhiza glabra, is widely used for the treatment of inflammatory liver diseases due to its potent anti-inflammatory and hepatoprotective activities. Hence, this study aimed to study the effects of MGIG on hepatic steatosis in mice fed a high-fat diet (HFD). Oil Red O staining and transmission electron microscopy revealed a decrease in lipid accumulation in the liver after MGIG treatment along with improved mitochondrial ultramicrostructures. Metabonomic analysis demonstrated that MGIG intervention increased glutamate utilization in mitochondria by promoting the uptake of glutamate into the tricarboxylic acid (TCA) cycle. The NAD+ /NADH ratio and the expression of other lipid-metabolism-related genes were increased in MGIG-treated livers. Transcriptome sequencing showed that the expression of TLR4, an isoform of the innate immunity Toll-like receptors (TLRs), was significantly decreased after MGIG treatment, suggesting a link between the anti-inflammatory effects of MGIG and its suppression of lipidation. Our results reveal the potent effects of MGIG on lipid metabolism and suggest that hepatic TLR4 might be a crucial therapeutic target to regulate energy homeostasis in hepatic steatosis.


Assuntos
Metabolismo Energético , Homeostase , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamatos/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Fígado/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , NAD/metabolismo , Saponinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia
12.
Med Sci Monit ; 26: e920376, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061080

RESUMO

BACKGROUND The hepatotoxicity of Tripterygium wilfordii Hook. f. (TWHF) limits its clinic utilization. Qingluo Tongbi formula (QTF) was formulated based on a basic Chinese medicine theory. Previous studies have confirmed the safety and efficacy of QTF in treating rheumatoid arthritis. Therefore, we considered that TWHF could be detoxified based on its reasonable compatibility with QTF. We investigated the detoxicity mechanism of QTF in reducing the liver toxicity of TWHF. MATERIAL AND METHODS We used network pharmacology to determine the relevant metabolism targets of TWHF, focusing on the phase II metabolic enzymes uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1), UGT1A6, and UGT2B7. Based on the molecular mechanisms of these predictions and the results of the network analysis, we designed experiments to verify our hypothesis in vivo. We used western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), double immunofluorescence, and laser confocal microscopy to detect the expression of UGTs. Finally, we used transmission electron microscopy to observe the endoplasmic reticulum structure. RESULTS The results confirmed that QTF reversed the TWHF-induced reduction of UGT content in liver microsomes, upregulated UGT1A1 and UGT1A6 but not UGT2B7 in the liver tissue. UGT2B7 expression in the liver and liver microsomes was inconsistent. QTF upregulated the expression of UGT2B7 in the endoplasmic reticulum, and QTF upregulated UGT2B7 expression levels in the endoplasmic reticulum compared with TWHF, which reduced liver toxicity. Structural changes were observed in the endoplasmic reticulum. CONCLUSIONS The Chinese traditional medicine compound QTF can achieve the effect of detoxification by upregulating the expression of UGT2B7 in the endoplasmic reticulum.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Glucuronosiltransferase/metabolismo , Fígado/efeitos dos fármacos , Tripterygium/efeitos adversos , Animais , Artrite Reumatoide/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Feminino , Humanos , Fígado/citologia , Fígado/patologia , Fígado/ultraestrutura , Microscopia Eletrônica de Transmissão , Microssomos Hepáticos , Modelos Biológicos , Ratos
13.
Braz J Med Biol Res ; 52(6): e7628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116255

RESUMO

This study aimed to explore the influence of gut microbiota alterations induced by Linderae radix ethanol extract (LREE) on alcoholic liver disease (ALD) in rats and to study the anti-inflammatory effect of LREE on ALD through the lipopolysaccharide (LPS) toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. ALD rat models were established by intragastric liquor [50% (v/v) ethanol] administration at 10 mL/kg body weight for 20 days. Rats were divided into six groups: normal group (no treatment), model group (ALD rats), Essentiale group (ALD rats fed with Essentiale, 137 mg/kg), and LREE high/moderate/low dose groups (ALD rats fed with 4, 2, or 1 g LREE/kg). NF-κB and LPS levels were evaluated. Liver pathological changes and intestinal ultrastructure were examined by hematoxylin and eosin staining and transmission electron microscopy. The gut microbiota composition was evaluated by 16S rDNA sequencing. Expression levels of TLR4 and CD68 in liver tissue, and occludin and claudin-1 in intestinal tissue were measured. LREE treatment significantly reduced NF-κB and LPS levels, improved liver pathological changes, and ameliorated intestinal ultrastructure injury. Meanwhile, LREE-fed groups showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than the rats in the model group. Administration of LREE suppressed TLR4 overexpression and promoted the expression of occludin and claudin-1 in intestine tissue. Thus, LREE could partly ameliorate microflora dysbiosis, suppress the inflammatory response, and attenuate liver injury in ALD rats. The protective effect of LREE might be related to the LPS-TLR4-NF-κB pathway.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/prevenção & controle , Lindera/química , Hepatopatias Alcoólicas/prevenção & controle , Fígado/ultraestrutura , Extratos Vegetais/farmacologia , Animais , Citocinas/sangue , Modelos Animais de Doenças , Lipopolissacarídeos/sangue , Hepatopatias Alcoólicas/diagnóstico por imagem , Masculino , Raízes de Plantas/química , Proteínas Serina-Treonina Quinases/sangue , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/sangue , Quinase Induzida por NF-kappaB
14.
Acta Histochem ; 121(5): 563-574, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31072619

RESUMO

The accidental spilling of petroleum oils into natural water resources expose fishes in the effluent area to serious problems.. Oreochromis niloticus were used in the current study as a model to investigate the toxicity of used engine oil and to evaluate the protective role of vitamin C against this toxicity. The oil concentration used in this study was previously determined to be 0.25 ml/l by 96 h-LC50. After 21 days of engine oil exposure, haematological and biochemical analyses revealed significant reduction in RBCs counts, haemoglobin concentrations and total proteins. However, ALT, AST and glucose levels were significantly increased by the end of the experiment indicating the damaging effects of the oil on fish tissues. Oxidative stress biomarkers were also measured; liver CAT activity was significantly decreased in the oil exposed group compared to control group, while MDA levels were significantly elevated. Histopathological examination showed the presence of several alterations in hepatic and branchial tissues in exposed group compared to the control group. Significant elevations in CYP1 A1 mRNA expression levels in hepatic tissue were also detected in the group exposed to used engine oil compared to the control group. However, supplementation of fishexposed to used engine oil with vitamin Csignificantly enhance the biochemical, oxidative and histological parameters.


Assuntos
Ácido Ascórbico/farmacologia , Ciclídeos , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Petróleo/toxicidade , Animais , Análise Química do Sangue , Ciclídeos/sangue , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Brânquias/patologia , Brânquias/ultraestrutura , Nível de Saúde , Histocitoquímica , Fígado/patologia , Fígado/ultraestrutura , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos
15.
Curr Pharm Biotechnol ; 20(6): 465-475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30961481

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnO NPs) are increasingly utilized in both industrial and medical applications. Therefore, the study was aimed to investigate the effect of green nanoparticle complex (green tea extract/zinc oxide nanoparticles complex, GTE/ZnO NPs) on oxidative stress induced by monosodium glutamate (MSG) on the liver of rats. METHODS: Wistar male rats (n=64) weighing between 200-250 g were divided randomly into eight groups: control group was given physiological saline (1 mg/kg), two groups were treated with two different doses of MSG (MSG-LD, MSG-HD; 6 and 17.5 mg/Kg, respectively), GTE was given 1 mg/mL, 5th group was treated with ZnO NPs and 6th group was treated with GTE/ZnO NPs complex while, 7th and 8th groups were treated with MSG-LD + GTE/ZnO NPs complex and MSG-HD + GTE/ZnO NPs complex, respectively. All substances were given orally for 30 consecutive days. At the end of the study, the liver was homogenized for measurement of the oxidative stress status and anti-inflammatory biomarkers as well as histological and transmission alternations. RESULTS: Results showed that the antioxidant enzymes activity and glutathione level were significantly decreased in MSG groups than control in a dose-dependent manner. Conversely, the malondialdehyde and inflammatory cytokines levels were significantly increased in MSG groups than the control group. The liver indicated no evidence of alteration in oxidative status, anti-inflammatory and morphological parameters in GTE, ZnO NPs and GTE/ZnO NPs complex groups. CONCLUSION: In conclusion, MSG at both doses caused oxidative stress and inflammation on liver after 28 days of exposure that supported histological analysis and transmission view of hepatic parenchyma. GTE/ZnO NPs act as partial hepato-protective against MSG.


Assuntos
Camellia sinensis/química , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Glutamato de Sódio/toxicidade , Óxido de Zinco/farmacologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocinas/metabolismo , Fígado/enzimologia , Fígado/ultraestrutura , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Ratos , Ratos Wistar
16.
Artigo em Inglês | MEDLINE | ID: mdl-31028934

RESUMO

Here we used RNA-Seq to explore the transcriptomic response and specific involvement of hepatic mRNA of juvenile Oreochromis niloticus (GIFT) as a result of dietary resveratrol supplementation (0.05 g/kg RES). More than 24,513,018 clean reads were reference genome guided assembly into 23,417 unigenes. 12,596 unigenes (29.64%) were annotated to GO database. There were 5, 179 and 1526 genes significantly differentially expressed genes at 15, 30 and 45 d respectively, and 8 KEGG pathways were enriched associated with this immune response. Hyperemia and compressed hepatic sinusoid, fibrosis of liver cell and abnormal hepatic epidermal cell revealed by H&E and SEM analysis respectively. Genes related with cytokine production (il12rb2, scfr), immune system (ig8l, hlfl, cd226, prf1l), autophagy regulation (atg4b), foxo signaling (ccnb2), steroid hormone biosynthesis (cyp3a40), fatty acid metabolism (scd1), metabolism (cacna1b) have been significantly decreased, while genes associated with such pathways above (leap-2, prdx4, mb, homer1, mif, sat1, cytbc1_8) and the pathway of protein processing in endoplasmic reticulum (cne1, tram1) have been significantly increased. These findings suggested RES activated some immune and biological process-related genes to enhance GIFT's innate immunity. It also suggested high concentration addition or long-time administration may bring negative effect in tilapia liver.


Assuntos
Ciclídeos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Animais Geneticamente Modificados , Aquicultura , Suplementos Nutricionais , Perfilação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Fígado/fisiologia , Fígado/ultraestrutura , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
17.
Oxid Med Cell Longev ; 2019: 4565238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918579

RESUMO

A surgical connection between portal and inferior cava veins was performed to generate an experimental model of high circulating ammonium and hepatic hypofunctioning. After 13 weeks of portacaval anastomosis (PCA), hyperammonemia and shrinkage in the liver were observed. Low glycemic levels accompanied by elevated levels of serum alanine aminotransferase were recorded. However, the activity of serum aspartate aminotransferase was reduced, without change in circulating urea. Histological and ultrastructural observations revealed ongoing vascularization and alterations in the hepatocyte nucleus (reduced diameter with indentations), fewer mitochondria, and numerous ribosomes in the endoplasmic reticulum. High activity of hepatic caspase-3 suggested apoptosis. PCA promoted a marked reduction in lipid peroxidation determined by TBARs in liver homogenate but specially in the mitochondrial and microsomal fractions. The reduced lipoperoxidative activity was also detected in assays supplemented with Fe2+. Only discreet changes were observed in conjugated dienes. Fluorescent probes showed significant attenuation in mitochondrial membrane potential, reactive oxygen species (ROS), and calcium content. Rats with PCA also showed reduced food intake and decreased energy expenditure through indirect calorimetry by measuring oxygen consumption with an open-flow respirometric system. We conclude that experimental PCA promotes an angiogenic state in the liver to confront the altered blood flow by reducing the prooxidant reactions associated with lower metabolic rate, along with significant reduction of mitochondrial content, but without a clear hepatic dysfunction.


Assuntos
Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/cirurgia , Derivação Portocava Cirúrgica , Anastomose Cirúrgica , Animais , Membrana Celular/metabolismo , Metabolismo Energético , Comportamento Alimentar , Corantes Fluorescentes/metabolismo , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Fígado/patologia , Fígado/ultraestrutura , Masculino , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Ratos Wistar , Frações Subcelulares/metabolismo
18.
Hepatology ; 69(5): 2164-2179, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552702

RESUMO

Acetaminophen (APAP) overdose is one of the leading causes of hepatotoxicity and acute liver failure in the United States. Accumulating evidence suggests that hepatocyte necrosis plays a critical role in APAP-induced liver injury (AILI). However, the mechanisms of APAP-induced necrosis and liver injury are not fully understood. In this study, we found that p53 up-regulated modulator of apoptosis (PUMA), a B-cell lymphoma-2 (Bcl-2) homology domain 3 (BH3)-only Bcl-2 family member, was markedly induced by APAP in mouse livers and in isolated human and mouse hepatocytes. PUMA deficiency suppressed APAP-induced mitochondrial dysfunction and release of cell death factors from mitochondria, and protected against APAP-induced hepatocyte necrosis and liver injury in mice. PUMA induction by APAP was p53 independent, and required receptor-interacting protein kinase 1 (RIP1) and c-Jun N-terminal kinase (JNK) by transcriptional activation. Furthermore, a small-molecule PUMA inhibitor, administered after APAP treatment, mitigated APAP-induced hepatocyte necrosis and liver injury. Conclusion: Our results demonstrate that RIP1/JNK-dependent PUMA induction mediates AILI by promoting hepatocyte mitochondrial dysfunction and necrosis, and suggest that PUMA inhibition is useful for alleviating acute hepatotoxicity attributed to APAP overdose.


Assuntos
Acetaminofen/intoxicação , Analgésicos não Narcóticos/intoxicação , Proteínas Reguladoras de Apoptose/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos , Proteínas Ativadoras de GTPase/metabolismo , Fígado/ultraestrutura , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Knockout , Proteínas Supressoras de Tumor/antagonistas & inibidores
19.
Braz. j. med. biol. res ; 52(6): e7628, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001534

RESUMO

This study aimed to explore the influence of gut microbiota alterations induced by Linderae radix ethanol extract (LREE) on alcoholic liver disease (ALD) in rats and to study the anti-inflammatory effect of LREE on ALD through the lipopolysaccharide (LPS) toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. ALD rat models were established by intragastric liquor [50% (v/v) ethanol] administration at 10 mL/kg body weight for 20 days. Rats were divided into six groups: normal group (no treatment), model group (ALD rats), Essentiale group (ALD rats fed with Essentiale, 137 mg/kg), and LREE high/moderate/low dose groups (ALD rats fed with 4, 2, or 1 g LREE/kg). NF-κB and LPS levels were evaluated. Liver pathological changes and intestinal ultrastructure were examined by hematoxylin and eosin staining and transmission electron microscopy. The gut microbiota composition was evaluated by 16S rDNA sequencing. Expression levels of TLR4 and CD68 in liver tissue, and occludin and claudin-1 in intestinal tissue were measured. LREE treatment significantly reduced NF-κB and LPS levels, improved liver pathological changes, and ameliorated intestinal ultrastructure injury. Meanwhile, LREE-fed groups showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than the rats in the model group. Administration of LREE suppressed TLR4 overexpression and promoted the expression of occludin and claudin-1 in intestine tissue. Thus, LREE could partly ameliorate microflora dysbiosis, suppress the inflammatory response, and attenuate liver injury in ALD rats. The protective effect of LREE might be related to the LPS-TLR4-NF-κB pathway.


Assuntos
Animais , Masculino , Ratos , Extratos Vegetais/farmacologia , Lindera/química , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/prevenção & controle , Fígado/ultraestrutura , Hepatopatias Alcoólicas/prevenção & controle , Lipopolissacarídeos/sangue , Citocinas/sangue , Ratos Sprague-Dawley , Proteínas Serina-Treonina Quinases/sangue , Raízes de Plantas/química , Modelos Animais de Doenças , Receptor 4 Toll-Like/sangue , Hepatopatias Alcoólicas/diagnóstico por imagem
20.
Ecotoxicol Environ Saf ; 164: 500-509, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30145490

RESUMO

Mercury is severely detrimental to organisms and is ubiquitous in both terrestrial and aquatic ecosystems. In the present study, we examined the effects of chronic mercury (Hg) exposure on metamorphosis, body size, thyroid microstructures, liver microstructural and ultrastructural features, and transcript levels of genes associated with lipid metabolism, oxidative stress and thyroid hormones signaling pathways of Chinese toad (Bufo gargarizans) tadpoles. Tadpoles were exposed to mercury concentrations at 0, 6, 12, 18, 24 and 30 µg/L from Gosner stage 26-42 of metamorphic climax. The present results showed that high dose mercury (24 and 30 µg/L) decelerated metamorphosis rate and inhibited body size of B. gargarizans larvae. Histological examinations have clearly exhibited that high mercury concentrations caused thyroid gland and liver damages. Moreover, degeneration and disintegration of hepatocytes, mitochondrial vacuolation, and endoplasmic reticulum breakdown were visible in the ultrastructure of liver after high dose mercury treatment. Furthermore, the larvae exposed to high dose mercury demonstrated a significant decrease in type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor α and ß (TRα and TRß) mRNA levels. Transcript level of superoxide dismutase (SOD) and heat shock protein (HSP) were significantly up regulated in larvae exposed to high dose mercury, while transcript level of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was significantly down regulated. Moreover, exposure to high dose mercury significantly down regulated mRNA expression of carnitine palmitoyltransferase (CPT), sterol carrier protein (SCP), acyl-CoA oxidase (ACOX) and peroxisome proliferator-activated receptor α (PPAPα), but significantly up regulated mRNA expression of fatty acid elongase (FAE), fatty acid synthetase (FAS) and Acetyl CoA Carboxylase (ACC). Therefore, we conclude that high dose mercury induced thyroid function disruption, liver oxidative stress and lipid metabolism disorder by damaging thyroid and liver cell structures and altering the expression levels of relevant genes.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mercúrio/toxicidade , Estresse Oxidativo , Glândula Tireoide/efeitos dos fármacos , Animais , Bufonidae , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Larva/ultraestrutura , Fígado/patologia , Fígado/ultraestrutura , Metamorfose Biológica/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Mensageiro/metabolismo , Receptores dos Hormônios Tireóideos/genética , Superóxido Dismutase/metabolismo , Glândula Tireoide/patologia , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA