Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Chin Med ; 52(1): 231-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328828

RESUMO

Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.


Assuntos
Berberina , Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Autofagia , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia
2.
J Neuroinflammation ; 20(1): 240, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864249

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS: 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aß plaque deposition, pro-inflammatory factors, and the content of Aß in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aß 1-42 (oAß) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAß was traced by immunofluorescence. RESULTS: In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aß) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aß accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aß autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aß degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS: These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aß clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Lactente , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Nature ; 620(7972): 200-208, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407815

RESUMO

Cancer cells evade T cell-mediated killing through tumour-immune interactions whose mechanisms are not well understood1,2. Dendritic cells (DCs), especially type-1 conventional DCs (cDC1s), mediate T cell priming and therapeutic efficacy against tumours3. DC functions are orchestrated by pattern recognition receptors3-5, although other signals involved remain incompletely defined. Nutrients are emerging mediators of adaptive immunity6-8, but whether nutrients affect DC function or communication between innate and adaptive immune cells is largely unresolved. Here we establish glutamine as an intercellular metabolic checkpoint that dictates tumour-cDC1 crosstalk and licenses cDC1 function in activating cytotoxic T cells. Intratumoral glutamine supplementation inhibits tumour growth by augmenting cDC1-mediated CD8+ T cell immunity, and overcomes therapeutic resistance to checkpoint blockade and T cell-mediated immunotherapies. Mechanistically, tumour cells and cDC1s compete for glutamine uptake via the transporter SLC38A2 to tune anti-tumour immunity. Nutrient screening and integrative analyses show that glutamine is the dominant amino acid in promoting cDC1 function. Further, glutamine signalling via FLCN impinges on TFEB function. Loss of FLCN in DCs selectively impairs cDC1 function in vivo in a TFEB-dependent manner and phenocopies SLC38A2 deficiency by eliminating the anti-tumour therapeutic effect of glutamine supplementation. Our findings establish glutamine-mediated intercellular metabolic crosstalk between tumour cells and cDC1s that underpins tumour immune evasion, and reveal glutamine acquisition and signalling in cDC1s as limiting events for DC activation and putative targets for cancer treatment.


Assuntos
Sistema A de Transporte de Aminoácidos , Células Dendríticas , Glutamina , Neoplasias , Transdução de Sinais , Sistema A de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glutamina/metabolismo , Neoplasias/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Phytother Res ; 37(7): 3025-3041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879478

RESUMO

Vascular endothelial cell (VEC) injury is a key factor in the development of diabetic vascular complications. Homoplantaginin (Hom), one of the main flavonoids from Salvia plebeia R. Br. has been reported to protect VEC. However, its effects and mechanisms against diabetic vascular endothelium remain unclear. Here, the effect of Hom on VEC was assessed using high glucose (HG)-treated human umbilical vein endothelial cells and db/db mice. In vitro, Hom significantly inhibited apoptosis and promoted autophagosome formation and lysosomal function such as lysosomal membrane permeability and the expression of LAMP1 and cathepsin B. The antiapoptosis effect of Hom was reversed by autophagy inhibitor chloroquine phosphate or bafilomycin A1. Furthermore, Hom promoted gene expression and nuclear translocation of transcription factor EB (TFEB). TFEB gene knockdown attenuated the effect of Hom on upregulating lysosomal function and autophagy. Moreover, Hom activated adenosine monophosphate-dependent protein kinase (AMPK) and inhibited the phosphorylation of mTOR, p70S6K, and TFEB. These effects were attenuated by AMPK inhibitor Compound C. Molecular docking showed a good interaction between Hom and AMPK protein. Animal studies indicated that Hom effectively upregulated the protein expression of p-AMPK and TFEB, enhanced autophagy, reduced apoptosis, and alleviated vascular injury. These findings revealed that Hom ameliorated HG-mediated VEC apoptosis by enhancing autophagy via the AMPK/mTORC1/TFEB pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Camundongos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/efeitos adversos , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia
5.
Phytother Res ; 37(1): 62-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131369

RESUMO

This study aimed to investigate the therapeutic effect of quercetin on ethanol-induced hepatic steatosis in L02 cells and elucidate the potential mechanism. In brief, L02 cells were pretreated with or without ethanol (3%) for 24 h, then treated quercetin (80, 40, 20 µM) for 24 h. The transfection procedure was performed with transcription factor EB (TFEB) small interfering RNA (siRNA TFEB) for 24 h. Our results showed that quercetin autophagic flux in the L02 cells, via upregulating of microtubule associated protein light chain 3B (LC3-II) and lysosome-associated membrane protein 1 (LAMP1), then downregulating of protein sequestosome 1 (SQSTM1/p62). Mechanistically, quercetin activated TFEB nuclear translocation, contributing to lysosomal biogenesis and autophagic activation. Accordingly, the genetic inhibition of TFEB-dependent autophagy decreased ethanol-induced fat accumulation in L02 cells via regulating fatty acid ß oxidation and lipid synthesis. Subsequently, quercetin-induced TFEB-dependent autophagic activation was also linked to inhibit oxidative stress via suppressing reactive oxygen species (ROS), enhancing activities of antioxidant enzymes, and promoting nuclear transfer of the nuclear factor E2-related factor 2 (Nrf2) translocation. Thus, we uncovered a novel protective mechanism against ethanol-induced hepatic steatosis and oxidative stress through TFEB-mediated lysosomal biogenesis and discovered insufficient autophagy as a novel previously unappreciated autophagic flux.


Assuntos
Etanol , Fígado Gorduroso , Humanos , Etanol/toxicidade , Quercetina/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/tratamento farmacológico , Autofagia , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
6.
Phytomedicine ; 103: 154235, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716542

RESUMO

BACKGROUND: Lipophagy is an autophagic process, which delivers the intracellular lipid droplets to the lysosomes for degradation. Recent studies revealed that the impairment of lysosomal biogenesis and autophagic flux led to dysregulation of lipophagy in hepatocytes, which exacerbated the development of nonalcoholic fatty liver disease (NAFLD). Therefore, agents restoring autophagic flux and lipophagy in hepatocytes may have therapeutic potential against this increasingly prevalent disease. Phillygenin (PHI), a lignin extracted from Forsythia suspense, exerts hepatoprotective and anti-inflammatory effects. However, the effect of PHI on NAFLD remains unknown. PURPOSE: This study aimed to investigate the protective effect of PHI on NAFLD and elucidate the underlying mechanism. METHODS: The effects of PHI were examined in palmitate (PA)-stimulated AML12 cells and primary hepatocytes, as well as in NAFLD mice induced by a high-fat diet (HFD). We also used transcription factor EB (TFEB) knockdown hepatocytes and hepatocyte-specific TFEB knockout (TFEBΔhep) mice for mechanistic studies. In vivo and in vitro studies were performed using western blots, immunofluorescence techniques, and transmission electron microscopy. RESULTS: Our results indicated that autophagic flux and lysosome biogenesis in PA-stimulated hepatocytes were impaired. PHI alleviated lipid deposition by increasing lysosomal biogenesis and autophagic flux. It also stimulated the release of endoplasmic reticulum Ca2+ to activate calcineurin, which regulated TFEB dephosphorylation and nuclear translocation, and promoted lysosomal biogenesis. In addition, PHI blocked the NLRP3 inflammasome pathway and improved hepatocyte inflammation in an autophagy-dependent manner. Consistent with the in vitro results, PHI improved hepatic steatosis and inflammation in HFD mice, but these beneficial effects were eliminated in hepatocyte-specific TFEB knockout mice. CONCLUSION: Despite PHI has been reported to have anti-hepatic fibrosis effects, whether it has a hepatoprotective effects against NAFLD and the underlying molecular mechanism remain unclear. Herein, we found that PHI restored lipophagy and suppressed lipid accumulation and inflammation by regulating the Ca2+-calcineurin-TFEB axis in hepatocytes. Thus, PHI represents a therapeutic candidate for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Calcineurina/uso terapêutico , Hepatócitos , Inflamação/metabolismo , Lignanas , Lipídeos , Lisossomos , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
7.
Phytomedicine ; 102: 154148, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35576742

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) can develop into cirrhosis, liver failure, or hepatocellular carcinoma without effective treatment. However, there are currently no drugs for NASH treatment, and the development of new therapeutics has remained a major challenge in NASH research. Advances in traditional Chinese medicine to treat liver disease inspired us to search for new NASH candidates from Chi-Shao, a widely used traditional Chinese medicine. PURPOSE: In this research, we aimed to clarify the anti-NASH effect and the underlying mechanism of isopropylidenyl anemosapogenin (IA, 1), which was a new lead compound isolated from Chi-Shao. STUDY DESIGN AND METHODS: Isopropylidenyl anemosapogenin (IA, 1) was first discovered by collagen type I α 1 promoter luciferase bioassay-guided isolation and then characterized by single crystal X-ray diffraction analysis and enriched by semi-synthesis. Using various molecular biology techniques, the multiple anti-NASH efficacies and mechanisms of IA were clarified based on in vitro LX-2 and Huh7 cell models, along with the in vivo choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model and bile duct ligation (BDL)-induced rat model. The UPLC-MS/MS method was used to assess the plasma concentration of IA. RESULTS: A new lead compound IA was isolated from the traditional Chinese medicine Chi-Shao, which showed significant anti-liver fibrosis activity in TGF-ß1-treated LX-2 cells and anti-liver steatosis activity in oleic acid-treated Huh7 cells. Furthermore, IA could significantly ameliorate in vivo CDAHFD-induced liver injury by activating the farnesoid X receptor pathway, including its targets Nr0b2, Abcb11, and Slc10a2. Simultaneously, IA activated the autophagy pathway by activating the TFEB factor, thereby promoting lipid degradation. Its liver-protective and anti-fibrosis activities were verified by the BDL-induced rat model. Finally, with an oral administration of 100 mg/kg, IA achieved the maximum plasma concentration of 1.23 ± 0.18 µg/ml at 2.67 ± 0.58 h. CONCLUSION: IA, an unreported lupine-type triterpenoid isolated from Chi-shao, can significantly alleviate liver injury and fibrosis via farnesoid X receptor activation and TFEB-mediated autophagy, which indicates that IA could serve as a novel therapeutic candidate against NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Fibrose , Fígado , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Espectrometria de Massas em Tandem
8.
Alcohol Clin Exp Res ; 45(10): 1950-1964, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486131

RESUMO

BACKGROUND: Recent evidence demonstrates that alcohol activates the mechanistic target of rapamycin (mTOR) and impairs hepatic transcription factor EB (TFEB) reducing autophagy and contributing to alcohol-induced liver injury. Trehalose, a disaccharide, activates TFEB and protects against diet-induced nonalcoholic fatty liver disease in mice. The aim of the present study was to investigate whether trehalose would reverse the impairment of TFEB induced by alcohol and protect against alcohol-induced liver injury. METHODS: Male C57BL/6J mice were subjected to chronic-plus-binge (Gao-binge) alcohol feeding with and without trehalose supplementation. Some mice were also administrered Alda-1, an aldehyde dehydrogenase 2 agonist. RESULTS: We found that Alda-1 did not affect Gao-binge alcohol-induced mTOR activation and impaired TFEB in mouse livers. Trehalose increased TFEB nuclear translocation, elevated levels of LC3-II and lysosomal proteins in mouse livers and cultured AML12 cells, confirming the activation of TFEB by trehalose. However, trehalose did not improve the impairment in TFEB induced by Gao-binge alcohol. Both Alda-1 and trehalose failed to protect against Gao-binge alcohol-induced steatosis and liver injury, based on the serum levels of alanine aminotransferase (ALT), histological analysis, and levels of hepatic triglyceride. Interestingly, trehalose increased expression of pro-inflammatory genes in mouse macrophage RAW264.7 cells and slightly increased the infiltration of hepatic neutrophils and inflammatory cytokine gene expression in Gao-binge alcohol-fed mice livers. CONCLUSIONS: Trehalose fails to improve the impaired TFEB induced by Gao-binge alcohol and does not protect against alcohol-induced liver injury.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/agonistas , Etanol/efeitos adversos , Hepatopatias Alcoólicas/prevenção & controle , Fígado/efeitos dos fármacos , Trealose/uso terapêutico , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Etanol/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Serina-Treonina Quinases TOR/metabolismo , Trealose/metabolismo , Trealose/farmacologia
9.
Phytomedicine ; 91: 153648, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332287

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. PURPOSE: The present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation. METHODS: QYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro. RESULTS: Oral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aß and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro. CONCLUSION: QYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.


Assuntos
Doença de Alzheimer , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , PPAR alfa/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas tau
10.
Int J Biol Sci ; 17(4): 1138-1152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867836

RESUMO

Spinal cord injury (SCI) results in a wide range of disabilities. Its complex pathophysiological process limits the effectiveness of many clinical treatments. Betulinic acid (BA) has been shown to be an effective treatment for some neurological diseases, but it has not been studied in SCI. In this study, we assessed the role of BA in SCI and investigated its underlying mechanism. We used a mouse model of SCI, and functional outcomes following injury were assessed. Western blotting, ELISA, and immunofluorescence techniques were employed to analyze levels of autophagy, mitophagy, pyroptosis, and AMPK-related signaling pathways were also examined. Our results showed that BA significantly improved functional recovery following SCI. Furthermore, autophagy, mitophagy, ROS level and pyroptosis were implicated in the mechanism of BA in the treatment of SCI. Specifically, our results suggest that BA restored autophagy flux following injury, which induced mitophagy to eliminate the accumulation of ROS and inhibits pyroptosis. Further mechanistic studies revealed that BA likely regulates autophagy and mitophagy via the AMPK-mTOR-TFEB signaling pathway. Those results showed that BA can significantly promote the recovery following SCI and that it may be a promising therapy for SCI.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Mitofagia/efeitos dos fármacos , Triterpenos Pentacíclicos/uso terapêutico , Piroptose/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ácido Betulínico
11.
Nutr Res ; 88: 28-33, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33743322

RESUMO

ELOVL fatty acid elongase 6 (ELOVL6) is a long-chain fatty acid elongase, and the hepatic expression of the Elovl6 gene and accumulation of triglycerides (TG) are enhanced by long-term high-fructose intake. Fatty acid synthesis genes, including Elovl6, are regulated by lipogenic transcription factors, sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). In addition, carbohydrate signals induce the expression of fatty acid synthase not only via these transcription factors but also via histone acetylation. Since a major lipotrope, myo-inositol (MI), can repress short-term high-fructose-induced fatty liver and the expression of fatty acid synthesis genes, we hypothesized that MI might influence SREBP-1c, ChREBP, and histone acetylation of Elovl6 in fatty liver induced by even short-term high-fructose intake. This study aimed to investigate whether dietary supplementation with MI affects Elovl6 expression, SREBP-1 and ChREBP binding, and acetylation of histones H3 and H4 at the Elovl6 promoter in short-term high-fructose diet-induced fatty liver in rats. Rats were fed a control diet, high-fructose diet, or high-fructose diet supplemented with 0.5% MI for 10 days. This study showed that MI supplementation reduced short-term high-fructose diet-induced hepatic expression of the Elovl6 gene, ChREBP binding, but not SREBP-1 binding, and acetylation of histones H3 and H4 at the Elovl6 promoter.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Elongases de Ácidos Graxos/genética , Frutose/administração & dosagem , Histonas/metabolismo , Inositol/administração & dosagem , Fígado/metabolismo , Acetilação/efeitos dos fármacos , Animais , DNA/metabolismo , Dieta , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
12.
Autophagy ; 17(11): 3833-3847, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33622188

RESUMO

Alzheimer disease (AD) is the most prevalent neurodegenerative disorder leading to dementia in the elderly. Unfortunately, no cure for AD is available to date. Increasing evidence has proved the roles of misfolded protein aggregation due to impairment of the macroautophagy/autophagy-lysosomal pathway (ALP) in the pathogenesis of AD, and thus making TFEB (transcription factor EB), which orchestrates ALP, as a promising target for treating AD. As a complementary therapy, acupuncture or electroacupuncture (EA) has been commonly used for treating human diseases. Although the beneficial effects of acupuncture for AD have been primarily studied both pre-clinically and clinically, the real efficacy of acupuncture on AD remains inconclusive and the underlying mechanisms are largely unexplored. In this study, we demonstrated the cognitive-enhancing effect of three-needle EA (TNEA) in an animal model of AD with beta-amyloid (Aß) pathology (5xFAD). TNEA reduced APP (amyloid beta (A4) precursor protein), C-terminal fragments (CTFs) of APP and Aß load, and inhibited glial cell activation in the prefrontal cortex and hippocampus of 5xFAD. Mechanistically, TNEA activated TFEB via inhibiting the AKT-MAPK1-MTORC1 pathway, thus promoting ALP in the brains. Therefore, TNEA represents a promising acupuncture therapy for AD, via a novel mechanism involving TFEB activation.Abbreviations Aß: ß-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; AKT1: thymoma viral proto-oncogene 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta (A4) precursor protein; BACE1: beta-site APP cleaving enzyme 1; CQ: chloroquine; CTFs: C-terminal fragments; CTSD: cathepsin D; EA: electroacupuncture; FC: fear conditioning; GFAP: glial fibrillary acidic protein; HI: hippocampus; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPT: microtubule-associated protein tau; MTORC1: mechanistic target of rapamycin kinase complex 1; MWM: Morris water maze; NFT: neurofibrillary tangles; PFC: prefrontal cortex; PSEN1: presenilin 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNEA: three-needle electroacupuncture.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/terapia , Eletroacupuntura , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Eletroacupuntura/métodos , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris
13.
Commun Biol ; 4(1): 1, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398033

RESUMO

Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem's biological activity, the target protein was identified via combined drug affinity responsive target stability and LC-MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


Assuntos
Autofagia/efeitos dos fármacos , Quempferóis/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Proteínas Mitocondriais/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Quempferóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Fundam Clin Pharmacol ; 35(3): 539-551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33259088

RESUMO

TFEB is a mammalian transcription factor that binds directly to the CLEAR consensus sequence (5'-GTCACGTGAC-3') present in the regulatory regions of genes inducing autophagosome formation, autophagosome-lysosome fusion, hydrolase enzyme expression, and lysosomal exocytosis. By modulating these activities, TFEB coordinates on-demand control over each cell's degradation pathway. Thus, a nuclear signaling pathway regulates cellular energy metabolism through TFEB. Our growing understanding of the role of TFEB and CLEAR in the promotion of healthy clearance together with in vitro and in vivo preclinical findings in various animal models of disease supports the conclusion that the pharmacological activation of TFEB could clear toxic proteins to treat both rare and common forms of neurodegenerative disease.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica , Humanos , Doenças por Armazenamento dos Lisossomos , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Transdução de Sinais
15.
J Agric Food Chem ; 69(2): 686-697, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33369397

RESUMO

Targeting autophagy and lysosome may serve as a promising strategy for cancer therapy. Tea polysaccharide (TP) has shown promising antitumor effects. However, its mechanism remains elusive. Here, TP was found to have a significant inhibitory effect on the proliferation of colon cancer line HCT116 cells. RNA-seq analysis showed that TP upregulated autophagy and lysosome signal pathways, which was further confirmed through experiments. Immunofluorescence experiments indicated that TP activated transcription factor EB (TFEB), a key nuclear transcription factor modulating autophagy and lysosome biogenesis. In addition, TP inhibited the activity of mTOR, while it increased the expression of Lamp1. Furthermore, TP ameliorated the lysosomal damage and autophagy flux barrier caused by Baf A1 (lysosome inhibitor). Hence, our data suggested that TP repressed the proliferation of HCT116 cells by targeting lysosome to induce cytotoxic autophagy, which might be achieved through mTOR-TFEB signaling. In summary, TP may be used as a potential drug to overcome colon cancer.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Camellia sinensis/química , Neoplasias do Colo/fisiopatologia , Lisossomos/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
16.
Bioorg Chem ; 105: 104464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33212310

RESUMO

The first phytochemical investigation of the seeds of Euphorbia peplus led to the isolation and characterization of five new (1-5), named euphopepluanones A-E, and five known diterpenoids (6-10). Their structures were established by extensive spectroscopic analysis and X-ray crystallographic experiments. Euphopepluanones A-E (1-3) feature a very rare 5/11/5-tricyclic skeleton, and euphopepluanones D-E (4-5) represent the first report of lathyrane type diterpenoids found in E. peplus. The new compounds 1-5 were assessed for their activities to induce lysosomal biogenesis through LysoTracker Red staining, in which compounds 1 and 3 could significantly induce lysosomal biogenesis. In addition, compounds 1 and 3 could promote the nuclear translocation of TFEB, a master transcriptional factor of lysosomal genes, indicating that compounds 1 and 3 induced lysosomal biogenesis through activation of TFEB.


Assuntos
Diterpenos/isolamento & purificação , Euphorbia/classificação , Lisossomos/efeitos dos fármacos , Compostos Macrocíclicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sementes/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Células HeLa , Humanos , Compostos Macrocíclicos/metabolismo , Estrutura Molecular , Biogênese de Organelas , Extratos Vegetais/metabolismo
17.
Free Radic Res ; 54(11-12): 918-930, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32623920

RESUMO

The translocation of transcription factor EB (TFEB) to the nucleus plays a pivotal role in the regulation of basic cellular processes, such as lysosome biogenesis and autophagy. Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, which is important in maintaining cellular homeostasis during environmental stress. Furthermore, oxidative stress is a critical cause for the progression of neurodegenerative diseases. Curcumin has anti-oxidative and anti-inflammatory activities, and is expected to have potential therapeutic effects in various diseases. In this study, we demonstrated that curcumin regulated TFEB export signalling via inhibition of glycogen synthase kinase-3ß (GSK-3ß); GSK-3ß was inactivated by curcumin, leading to reduced phosphorylation of TFEB. We further showed that H2O2-induced oxidative stress was reduced by curcumin via the Nrf2/HO-1 pathway in human neuroblastoma cells. In addition, we showed that curcumin induced the degradation of amyloidogenic proteins, including amyloid-ß precursor protein and α-synuclein, through the TFEB-autophagy/lysosomal pathway. In conclusion, curcumin regulates autophagy by controlling TFEB through the inhibition of GSK-3ß, and increases antioxidant gene expression in human neuroblastoma cells. These results contribute to the development of novel cellular therapies for neurodegenerative diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Antineoplásicos/uso terapêutico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Neuroblastoma/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Humanos , Espécies Reativas de Oxigênio , Transfecção
18.
J Exp Clin Cancer Res ; 39(1): 93, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448281

RESUMO

BACKGROUND: Doxorubicin is effective in a variety of solid and hematological malignancies. Unfortunately, clinical application of doxorubicin is limited due to a cumulative dose-dependent cardiotoxicity. Dihydrotanshinone I (DHT) is a natural product from Salvia miltiorrhiza Bunge with multiple anti-tumor activity and anti-inflammation effects. However, its anti-doxorubicin-induced cardiotoxicity (DIC) effect, either in vivo or in vitro, has not been elucidated yet. This study aims to explore the anti-inflammation effects of DHT against DIC, and to elucidate the potential regulatory mechanism. METHODS: Effects of DHT on DIC were assessed in zebrafish, C57BL/6 mice and H9C2 cardiomyocytes. Echocardiography, histological examination, flow cytometry, immunochemistry and immunofluorescence were utilized to evaluate cardio-protective effects and anti-inflammation effects. mTOR agonist and lentivirus vector carrying GFP-TFEB were applied to explore the regulatory signaling pathway. RESULTS: DHT improved cardiac function via inhibiting the activation of M1 macrophages and the excessive release of pro-inflammatory cytokines both in vivo and in vitro. The activation and nuclear localization of NF-κB were suppressed by DHT, and the effect was abolished by mTOR agonist with concomitant reduced expression of nuclear TFEB. Furthermore, reduced expression of nuclear TFEB is accompanied by up-regulated phosphorylation of IKKα/ß and NF-κB, while TFEB overexpression reversed these changes. Intriguingly, DHT could upregulate nuclear expression of TFEB and reduce expressions of p-IKKα/ß and p-NF-κB. CONCLUSIONS: Our results demonstrated that DHT can be applied as a novel cardioprotective compound in the anti-inflammation management of DIC via mTOR-TFEB-NF-κB signaling pathway. The current study implicates TFEB-IKK-NF-κB signaling axis as a previously undescribed, druggable pathway for DIC.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/toxicidade , Inflamação/prevenção & controle , NF-kappa B/metabolismo , Fenantrenos/farmacologia , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Furanos , Regulação da Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , Fosforilação , Quinonas , Peixe-Zebra
19.
PLoS One ; 15(3): e0230156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32134989

RESUMO

Kampo, a system of traditional Japanese therapy utilizing mixtures of herbal medicine, is widely accepted in the Japanese medical system. Kampo originated from traditional Chinese medicine, and was gradually adopted into a Japanese style. Although its effects on a variety of diseases are appreciated, the underlying mechanisms remain mostly unclear. Using a quantitative tf-LC3 system, we conducted a high-throughput screen of 128 kinds of Kampo to evaluate the effects on autophagy. The results revealed a suppressive effect of Shigyakusan/TJ-35 on autophagic activity. TJ-35 specifically suppressed dephosphorylation of ULK1 and TFEB, among several TORC1 substrates, in response to nutrient deprivation. TFEB was dephosphorylated by calcineurin in a Ca2+ dependent manner. Cytosolic Ca2+ concentration was increased in response to nutrient starvation, and TJ-35 suppressed this increase. Thus, TJ-35 prevents the starvation-induced Ca2+ increase, thereby suppressing induction of autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Inanição/metabolismo
20.
J Agric Food Chem ; 68(46): 13025-13037, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31322351

RESUMO

Increasing evidence indicates that anthocyanins exert beneficial effects on type 2 diabetes (T2D), but the underlying mechanism remains unclear. Herein, the hyperglycemia-lowering effect of Pg3G derived from wild raspberry was investigated on high-glucose/high-fat (HG+HF)-induced hepatocytes and db/db diabetic mice. Our results indicated that Pg3G promoted glucose uptake in HG+HF-induced hepatocytes. Moreover, Pg3G induced autophagy, whereas autophagy inhibitors blocked the hypoglycemic effect of Pg3G. Transcriptional factor EB (TFEB) was found to be linked to Pg3G-induced autophagy. In vivo study showed that Pg3G treatment contributed to the improvement of glucose tolerance, insulin sensitivity, and induction of autophagy. Furthermore, Pg3G not only modified the gut microbiota composition, as indicated by an increased abundance of Prevotella, and elevated Bacteroidetes/Firmicutes ratio, but also strengthened the intestinal barrier integrity. This study unveils a novel mechanism that Pg3G attenuates hyperglycemia through inducing autophagy and modulating gut microbiota, which implicates a potential nutritional intervention strategy for T2D.


Assuntos
Antocianinas/administração & dosagem , Autofagia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Rubus/química , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Frutas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA