RESUMO
In this report, we discovered a new entity named cataract, alopecia, oral mucosal disorder, and psoriasis-like (CAOP) syndrome in two unrelated and ethnically diverse patients. Furthermore, patient 1 failed to respond to regular treatment. We found that CAOP syndrome was caused by an autosomal recessive defect in the mitochondrial membrane-bound transcription factor peptidase/site-1 protease (MBTPS1, S1P). Mitochondrial abnormalities were observed in patient 1 with CAOP syndrome. Furthermore, we found that S1P is a novel mitochondrial protein that forms a trimeric complex with ETFA/ETFB. S1P enhances ETFA/ETFB flavination and maintains its stability. Patient S1P variants destabilize ETFA/ETFB, impair mitochondrial respiration, decrease fatty acid ß-oxidation activity, and shift mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis. Mitochondrial dysfunction and inflammatory lesions in patient 1 were significantly ameliorated by riboflavin supplementation, which restored the stability of ETFA/ETFB. Our study discovered that mutations in MBTPS1 resulted in a new entity of CAOP syndrome and elucidated the mechanism of the mutations in the new disease.
Assuntos
Catarata , Psoríase , Alopecia/genética , Catarata/genética , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Riboflavina/metabolismoRESUMO
Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the "electron transfer" (ET) and the "bifurcating" (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°OX/ASQ. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop ("zipper") and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.
Assuntos
Arginina , Flavina-Adenina Dinucleotídeo/análogos & derivados , Monofosfato de Adenosina/metabolismo , Arginina/metabolismo , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons/química , Flavoproteínas Transferidoras de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/química , Flavinas/metabolismo , OxirreduçãoRESUMO
To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency (MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner, we studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up study were performed. We showed that fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers (aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. In conclusion, fibers with cracks, aRRFs and diffuse decreased SDH activity could distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.
Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Acil Coenzima A/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Seguimentos , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Estudos Retrospectivos , Riboflavina/genética , Riboflavina/uso terapêuticoRESUMO
Mitochondrial flavin adenine dinucleotide (FAD) transporter deficiencies are new entities recently reported to cause a neuro-myopathic phenotype. We report three patients from two unrelated families who presented primarily with hypoketotic hypoglycemia. They all had acylcarnitine profiles suggestive of multiple acyl-CoA dehydrogenase deficiency (MADD) with negative next-generation sequencing of electron-transfer flavoprotein genes (ETFA, ETFB, and ETFDH). Whole exome sequencing revealed a homozygous c.272 G > T (p.Gly91Val) variant in exon 2 of the SLC25A32 gene. The three patients shared the same variant, and they all demonstrated similar clinical and biochemical improvement with riboflavin supplementation. To date, these are the first patients to be reported with hypoketotic hypoglycemia without the neuromuscular phenotype previously reported in patients with SLC25A32 deficiency.
Assuntos
Hipoglicemia , Proteínas Ferro-Enxofre , Proteínas de Membrana Transportadoras , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Hipoglicemia/genética , Proteínas Ferro-Enxofre/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/metabolismoRESUMO
Electron transfer flavoprotein dehydrogenase, also called ETF-ubiquinone oxidoreductase (ETF-QO), is a protein localized in the inner membrane of mitochondria, playing a central role in the electron-transfer system. Indeed, ETF-QO mediates electron transport from flavoprotein dehydrogenases to the ubiquinone pool. ETF-QO mutations are often associated with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD, OMIM#231680), a multisystem genetic disease characterized by various clinical manifestations with different degrees of severity. In this review, we outline the clinical features correlated with ETF-QO deficiency and the benefits obtained from different treatments, such as riboflavin, L-carnitine and/or coenzyme Q10 supplementation, and a diet poor in fat and protein. Moreover, we provide a detailed summary of molecular and bioinformatic investigations, describing the mutations identified in ETFDH gene and highlighting their predicted impact on enzymatic structure and activity. In addition, we report biochemical and functional analysis, performed in HEK293 cells and patient fibroblasts and muscle cells, to show the relationship between the nature of ETFDH mutations, the variable impairment of enzyme function, and the different degrees of RR-MADD severity. Finally, we describe in detail 5 RR-MADD patients carrying different ETFDH mutations and presenting variable degrees of clinical symptom severity.
Assuntos
Flavoproteínas Transferidoras de Elétrons , Proteínas Ferro-Enxofre , Mitocôndrias , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Carnitina/genética , Carnitina/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/genética , Ubiquinona/metabolismoRESUMO
BACKGROUND In this study, we investigated the clinical and pathological features of patients with lipid storage myopathy (LSM) complicated with hyperuricemia, to improve clinicians' understanding of metabolic multi-muscular disorder with metabolic disorders, and to reduce the risk of missed diagnosis of LSM. MATERIAL AND METHODS From January 2005 to December 2017, 8 patients underwent muscle biopsy and diagnosed by muscle pathology and genetic testing in our hospital. All 8 patients were in compliance with LSM diagnosis. We collected data on the patient's clinical performance, adjuvant examination, treatment, and outcomes to provide a comprehensive report and description of LSM patients with hyperuricemia. RESULTS All patients were diagnosed as having ETFDH gene mutations. The main clinical manifestations of patients were chronic limb and trunk weakness, limb numbness, and muscle pain. The serum creatine kinase (CK) values in all patients were higher than normal values. Electromyography showed 3 cases of simple myogenic damage and 3 cases of neurogenic injury. Hematuria metabolic screening showed that 2 patients had elevated glutaric aciduria, and 1 patient had elevated fatty acyl carnitine in the blood. All patients were given riboflavin treatment, and the clinical symptoms were significantly improved, and 3 patients returned to normal uric acid levels after treatment. Pathological staining showed an abnormal deposition of lipid droplets in muscle fibers. CONCLUSIONS If an adolescent hyperuricemia patient has abnormal limb weakness, exercise intolerance, and elevated serum CK values, clinicians need to be highly alert to the possibility of LSM. Early diagnosis and treatment of LSM should improve the clinical symptoms and quality of life and reduce complications.
Assuntos
Hiperuricemia/fisiopatologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Adolescente , Adulto , Carnitina/análogos & derivados , Carnitina/metabolismo , Criança , China , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Feminino , Humanos , Hiperuricemia/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Debilidade Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Distrofias Musculares/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Qualidade de Vida , Riboflavina/metabolismo , Adulto JovemRESUMO
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) that encodes the ETF-ubiquinone oxidoreductase (ETF-QO) has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). ETF-QO is an electron carrier that mainly functions in mitochondrial fatty acid ß-oxidation and the delivery of electrons to the ubiquinone pool in the mitochondrial respiratory chain. A high frequency of c.250G>A has been found in Taiwanese patients with late-onset MADD. We postulated that the ETFDH c.250G>A mutation may concomitantly impair fatty acid ß-oxidation and mitochondrial function. Using MADD patient-derived lymphoblastoid cells and specifically overexpressed ETFDH c.92C>T, c.250G>A, or coexisted c.92C>T and c.250G>A (c.92C>T + c.250G>A) mutated lymphoblastoid cells, we addressed the genotype-phenotype relationship of ETFDH variation in the pathogenesis of MADD. The decreased adenosine triphosphate synthesis, dissipated mitochondrial membrane potentials, reduced mitochondrial bioenergetics, and increased neutral lipid droplets and lipid peroxides were found in the MADD patient-derived lymphoblastoid cells. Riboflavin and/or coenzyme Q10 supplementation rescued cells from lipid droplet accumulation. All three mutant types, c.92C>T, c.250G>A, or c.92C>T + c.250G>A, had increased lipid droplet accumulation after treatment with palmitic acid. These results help to clarify the molecular pathogenesis of MADD as a result of the high frequency of the ETFDH c.250G>A and c.92C>T mutations.
Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Mutação/genética , Adolescente , Sequência de Bases , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular Tumoral , Flavoproteínas Transferidoras de Elétrons/genética , Ácidos Graxos/sangue , Humanos , Gotículas Lipídicas/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Músculos/metabolismo , Músculos/ultraestrutura , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Riboflavina/metabolismo , Sarcolema/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismoRESUMO
BACKGROUND: Deficiency of electron transfer flavoprotein dehydrogenase (ETFDH) is associated with multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder is an autosomal recessive lipid storage myopathy (LSM) that exhibits a wide range of clinical features, including myopathy, weakness and multisystem dysfunctions. Many patients with late onset of MADD improve when treated with riboflavin and are also referred to as RR-MADD (riboflavin-responsive multiple Acyl-CoA dehydrogenase disorder). METHODS: In this study, we report the clinical and genetic characterization of a novel RR-MADD patient. Biochemical data were obtained from analysis of muscle and plasma samples. DNA and RNA were extracted from peripheral blood, and sequence analysis and expression study of ETFDH gene were performed. Finally, the impact of mutations on ETFDH folding was evaluated using bioinformatic tools. RESULTS: Patient initially presented with vomiting, muscle weakness, and acidosis. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of long and medium chain acylcarnitines, supporting the diagnosis of RR-MADD. Molecular analysis of ETFDH gene revealed two heterozygous mutations, a novel splice variation in intron 10, c.1285 + 1G > A, and the previously reported c.560C > T missense mutation. RT-PCR analysis showed an alteration of ETFDH RNA splicing which in turn should lead to the production of a truncated protein. The in silico prediction analysis of ETFDH tridimensional structure demonstrated that the missense mutation resulted in instability and loss of protein activation, while the splice site variation induced a dramatic conformational change of the truncated protein. After MCT diet supplemented with carnitine and riboflavin, the patient showed significant biochemical and clinical improvement, in spite of severe molecular defect. CONCLUSION: This case report extends the spectrum of ETFDH mutations in MADD, providing further evidence that patients presenting at least one missense mutation in the FAD-binding domain may respond to either carnitine or riboflavin treatment, due to the recovery of some enzymatic activity.
Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Carnitina/uso terapêutico , Simulação por Computador , Análise Mutacional de DNA , Quimioterapia Combinada , Flavoproteínas Transferidoras de Elétrons/metabolismo , Feminino , Humanos , Proteínas Ferro-Enxofre/metabolismo , Pessoa de Meia-Idade , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Músculo Esquelético/enzimologia , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Riboflavina/uso terapêuticoRESUMO
Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In ß-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient ß-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1ß release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with ß-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.
Assuntos
Ácidos Graxos/metabolismo , Inflamassomos/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Fosforilação Oxidativa/efeitos dos fármacos , Ubiquinona/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Flavoproteínas Transferidoras de Elétrons/deficiência , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Inflamassomos/metabolismo , Proteínas Ferro-Enxofre/deficiência , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo , Ubiquinona/farmacologiaRESUMO
OBJECTIVE: To identify pathogenic mutation in a boy affected with riboflavin responsive-multiple acyl-CoA dehydrogenase deficiency (RR-MADD). METHODS: The patient was initially diagnosed as primary carnitine deficiency (PCD) and has been treated with carnitine supplementation for 7 years. Clinical manifestations and characteristics of fibula muscle specimen were analyzed. Potential mutation in electron transfer flavoprotein dehydrogenase (ETFDH) gene (for the patient and his parents) and carnitine transfer protein gene (SLC22A5) (for the patient) was screened. RESULTS: Electronic microscopy of the muscle specimen has suggested lipid storage myopathy. Mutation analysis has found that the patient carried compound heterozygous mutations, c.250G>A and c.380T>C, in exon 3 of the ETFDH gene, whilst his father and mother were heterozygous for the c.380T>C and c.250G>A mutations, respectively. Screening of the SLC22A5 gene has yielded no clinically meaningful result. After the establishment of diagnosis of RR-MADD, the condition of the patient has improved greatly with supplementation of high doses of riboflavin along with continuous carnitine supplement. CONCLUSION: The c.250G>A (p.Ala84Thr) mutation of exon 3 of the ETFDH gene has been a hot spot in Southern Chinese population, whilst the c.380T>C (p.Leu127Pro) is rarely reported. Our case has suggested that therapeutic diagnosis cannot substitute genetic testing. The mechanism for having stabilized the patient with only carnitine supplementation for 7 years needs further investigation.
Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Riboflavina/metabolismo , Adolescente , Adulto , Sequência de Bases , Criança , Análise Mutacional de DNA , Flavoproteínas Transferidoras de Elétrons/metabolismo , Feminino , Humanos , Proteínas Ferro-Enxofre/metabolismo , Masculino , Dados de Sequência Molecular , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Membro 5 da Família 22 de Carreadores de SolutoRESUMO
BACKGROUND: Cardiovascular proteomics investigation reveals the characterization and elucidation of the novel therapeutic targets and strategies to prevent the development of heart failure associated diabetic complication by using 2DE and MS. METHODS: The experimental animals were made diabetic with a single intraperitoneal injection of alloxan (150 mg/kg of bw). Albino rats were randomly divided into four individual groups: Group-I control (n=6), group-II alloxan-induced diabetic rats, untreated (n=6), group-III (n=6) and group-IV (n=6) alloxan-induced diabetic rats were treated with aqueous and ethanolic extracts of Cynodon dactylon for 15 days, respectively. Animals were euthanized to collect the heart tissues and blood samples. 2DE sample preparation, gel running and staining (n=6: each groups) were performed at the same time to avoid variation. The result of six gel images from each group were analyzed and evaluated as one match set with 2D software (P<0.05). RESULTS: The above experiment revealed two up-regulated proteins in group-II i.e. NTF4 and ETFB. CONCLUSIONS: NTF4 is a neuro-protective agent for neuro-degenerative diseases. It will prevent diabetic secondary complications, such as diabetic polyneuropathy and cardiomyopathy. ETFB is active in the mitochondria, the energy-producing centres in cells. It is clear from the experiment that because of up-regulation of ETFB more energy is availabile and the electron transfer for heart during diabetes is possible, what leads to reduce the oxidative stress and free-radical formation. The up-regulated proteins reduced CVD that occurred just before overt hyperglycaemia due to administration of C. dactylon. This approach established the preliminary reference map for decoding cellular mechanisms linked between pathogenesis CVD and diabetes.
Assuntos
Diabetes Mellitus Experimental/genética , Flavoproteínas Transferidoras de Elétrons/agonistas , Insuficiência Cardíaca/genética , Hipoglicemiantes/farmacologia , Miocárdio/metabolismo , Fatores de Crescimento Neural/agonistas , Extratos Vegetais/farmacologia , Aloxano , Animais , Cynodon/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Hipoglicemiantes/isolamento & purificação , Masculino , Miocárdio/patologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Proteômica , Ratos , Ratos WistarRESUMO
Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.
Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Variação Genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Riboflavina/metabolismo , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Células HEK293 , Humanos , Proteínas Ferro-Enxofre/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , TransfecçãoRESUMO
Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Animais , Transporte de Elétrons/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , CamundongosRESUMO
Mutations in the genes encoding the alpha-subunit and beta-subunit of the mitochondrial electron transfer flavoprotein (ETF) and the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) cause multiple acyl-CoA dehydrogenation deficiency (MADD), a disorder of fatty acid and amino acid metabolism. Point mutations in ETF, which may compromise folding, and/or activity, are associated with both mild and severe forms of MADD. Here we report the investigation on the conformational and stability properties of the disease-causing variant ETFbeta-D128N, and our findings on the effect of flavinylation in modulating protein conformational stability and activity. A combination of biochemical and biophysical methods including circular dichroism, visible absorption, flavin, and tryptophan fluorescence emission allowed the analysis of structural changes and of the FAD moiety. The ETFbeta-D128N variant retains the overall fold of the wild type, but under stress conditions its flavin becomes less tightly bound. Flavinylation is shown to improve the conformational stability and biological activity of a destabilized D128N variant protein. Moreover, the presence of flavin prevented proteolytic digestion by avoiding protein destabilization. A patient homozygous for the ETFbeta-D128N mutation developed severe disease symptoms in association with a viral infection and fever. In agreement, our results suggest that heat inactivation of the mutant may be more relevant at temperatures above 37 degrees C. To mimic a situation of fever in vitro, the flavinylation status was tested at 39 degrees C. FAD exerts the effect of a pharmacological chaperone, improving ETF conformation, and yielding a more stable and active enzyme. Our results provide a structural and functional framework that could help to elucidate the role that an increased cellular FAD content obtained from riboflavin supplementation may play in the molecular pathogenesis of not only MADD, but genetic disorders of flavoproteins in general.
Assuntos
Flavoproteínas Transferidoras de Elétrons/química , Flavina-Adenina Dinucleotídeo/química , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Dobramento de Proteína , Riboflavina/química , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Dicroísmo Circular , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Homozigoto , Temperatura Alta , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação Puntual , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Riboflavina/metabolismo , Riboflavina/farmacologia , Relação Estrutura-AtividadeRESUMO
A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.
Assuntos
DNA Complementar/isolamento & purificação , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias Hepáticas/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Clonagem Molecular , Transporte de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/isolamento & purificação , Proteínas Ferro-Enxofre/isolamento & purificação , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/isolamento & purificação , Sinais Direcionadores de Proteínas/genética , Ratos , Saccharomyces cerevisiae/genéticaRESUMO
We report a patient with lipid-storage myopathy due to multiple acyl-CoA dehydrogenation deficiency (MADD). Molecular genetic analysis showed that she was compound heterozygous for mutations in the gene for electron transfer flavoprotein:ubiquinone oxidoreductase (ETFQO). Despite a good initial response to treatment, she developed respiratory insufficiency at age 14 years and has required long-term overnight ventilation. Thus, MADD is one of the few conditions that can cause a myopathy with weakness of the respiratory muscles out of proportion to the limb muscles.