Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237683

RESUMO

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Assuntos
Fosfolipídeos , Receptores Acoplados a Proteínas G , Animais , Transporte Biológico , Colesterol , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Bovinos , Perus
2.
J Colloid Interface Sci ; 657: 695-704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071818

RESUMO

HYPOTHESIS: Oleosomes are natural oil droplets with a unique phospholipid/protein membrane, abundant in plant seeds, from which they can be extracted and used in emulsion-based materials, such as foods, cosmetics and pharmaceutics. The lubrication properties of such materials are essential, on one hand, due to the importance of the in-mouth creaminess for the consumed products or the importance of spreading the topical creams. Therefore, here, we will evaluate the lubrication properties of oleosomes, and how these properties are affected by the components at the oleosome membrane. EXPERIMENT: Oleosomes were extracted, and their oral lubricating properties were evaluated using tribology. To understand the influence of the oil droplet membrane composition, reconstituted oleosomes were also studied, with membranes that differed in protein/lecithin ratio. Additionally, whey protein- and lecithin-stabilised emulsions were used as reference samples. Confocal laser scattering microscopy was used to study the samples visually before and after tribological analysis. FINDINGS: Oleosomes followed a ball-bearing mechanism, which was probably related to their high physical stability due to the presence of membrane proteins. When the membrane protein concentration at the surface was reduced, the droplet stability weakened, leading to plating-out lubrication. Following our results, we elucidated the oleosome lubrication mechanism and showed their possible control by changing the membrane composition.


Assuntos
Lecitinas , Gotículas Lipídicas , Lubrificação , Emulsões/metabolismo , Fosfolipídeos/metabolismo
3.
Gene ; 896: 148056, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042217

RESUMO

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ácidos Graxos , Perciformes , Animais , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/genética , Óleo de Palmeira/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética
4.
Chemosphere ; 349: 140844, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042419

RESUMO

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Assuntos
Dinoflagellida , Fósforo , Fósforo/metabolismo , Lipídeos de Membrana/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Fosfolipídeos/metabolismo , Autofagia
5.
J Nutr Biochem ; 123: 109484, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866428

RESUMO

n-3 polyunsaturated fatty acids (PUFA) have shown to exert beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Supplements of n-3 PUFA occur in either phospholipid or triacylglycerol form. The present study aimed to compare whether the different n-3 PUFA of marine-origin, namely krill oil, DHA/EPA-phospholipid (PL), and EPA/DHA-triacylglycerol (TAG) forms had differential abilities to ameliorate NAFLD. The NAFLD model was established in mice fed a high-fat and high-cholesterol diet (HFD). The mice showed evidence of weight gain, dyslipidemia, insulin resistance and hepatic steatosis after 9 weeks of HFD, while the three forms of the n-3 PUFA reduced hepatic TAG accumulation, fatty liver and improved insulin instance, and hepatic biomarkers after 9 weeks of intervention. Of these, krill oil intervention significantly reduced adipocyte hypertrophy and hepatic steatosis in comparison with DHA/EPA-PL and EPA/DHA-TAG groups. Importantly, only krill oil intervention significantly reduced serum alanine transaminase, aspartate transaminase concentrations and low-density lipoprotein-cholesterol, compared with the HFD group. Supplemental n-3 PUFA lowered circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations, compared with the HFD group, which was associated with down-regulating CB1 and upregulating adiponectin expressions in adipose tissue. Besides, targeted lipidomic analyses indicated that the increased adiponectin levels were accompanied by reductions in hepatic ceramide levels. The reduced ceramide levels were associated with inhibiting lipid synthesis and increasing fatty acid ß-oxidation, finally inhibiting TAG accumulation in the liver. Through mediating CB1/adiponectin/ceramide pathway, the present study suggested that administration of krill oil had superior health effects in the therapy of NAFLD in comparison with DHA/EPA-PL and EPA/DHA-TAG.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipídeos/metabolismo , Adiponectina/metabolismo , Triglicerídeos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Colesterol/metabolismo , Receptores de Canabinoides/metabolismo , Ácidos Graxos/metabolismo
6.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958678

RESUMO

Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.


Assuntos
Ácidos Graxos , Lipídeos de Membrana , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Membrana Celular/metabolismo , Fluidez de Membrana , Eucariotos/metabolismo , Fosfolipídeos/metabolismo
7.
Mar Drugs ; 21(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999384

RESUMO

With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, we found that the functional loss of PhoD-type alkaline phosphatase (AP), a phosphorus-stress indicator in phytoplankton, could lead to increased lipid contents in the model diatom Phaeodactylum tricornutum, but how the AP mutation may change lipid composition remains unexplored. This study addresses the gap in the research and investigates the effects of PhoD-type AP mutation on the lipid composition and metabolic regulation in P. tricornutum using transcriptomic and lipidomic analyses. We observed significantly modified lipid composition and elevated production of fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, ceramide, phosphatidylinositol bisphosphate, and monogalactosylmonoacylglycerol after PhoD_45757 mutation. Meanwhile, genes involved in fatty acid biosynthesis were upregulated in mutant cells. Moreover, the mutant exhibited increased contents of ω-3 long-chain polyunsaturated fatty acid (LC-PUFA)-bound phospholipids, indicating that PhoD_45757 mutation could improve the potential bioavailability of PUFAs. Our findings indicate that AP mutation could influence cellular lipid synthesis and probably redirect carbon toward lipid production and further demonstrate that AP mutation is a promising approach for the development of high-value microalgal strains for biomedical and other applications.


Assuntos
Diatomáceas , Ácidos Graxos Ômega-3 , Microalgas , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Diatomáceas/metabolismo , Fosfatase Alcalina/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/metabolismo , Microalgas/genética , Microalgas/metabolismo
8.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729012

RESUMO

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Assuntos
Fosfolipídeos , Esfingomielinas , Fosfolipídeos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Bicamadas Lipídicas/química , Lecitinas , Lipossomas Unilamelares/química
9.
Poult Sci ; 102(10): 102976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562127

RESUMO

Flaxseed is a rich source of α-linolenic acid (ALA, 18:3 n-3) and can be used to enrich chicken tissues with n-3 fatty acids (FA). However, antinutritional factors in flaxseed compromise the live performance of birds coupled with increased oxidative stress. Chromium (Cr) is a trace element with antioxidant properties. It is hypothesized that Cr supplementation will affect the hepatic total lipid profile, phospholipid n-3 and n-6 FA molecular species, lipid oxidation products, and transcription of genes associated with lipid metabolism in broiler chickens fed flaxseed. Ninety (n = 90), day-old Cornish cross chicks were fed a corn-soybean meal-based diet containing 0% flaxseed (CTR), 10% flaxseed (FLAX), and FLAX + 0.05% organic Cr (FLAXCr) for 42 d. The chicks were kept in 18 pens with 5 chicks per pen. For all response variables, the effect of dietary treatments were compared separately using SAS 9.4. P values were considered significant at ≤0.05. Total lipids, saturated FA, long-chain (≥20C) n-6 FA were reduced while total n-3 FA and long-chain n-3 FA were higher in the liver of FLAX and FLAXCr than CTR (P < 0.05). Hepatic phosphatidylcholine (PC) and phosphatidylethnolamine (PE) n-3 species (36:5, 38:6) were higher in FLAX and FLAXCr compared to CTR (P < 0.05). On the contrary, n-6 species in PC (36:4, 38:4) and PE (38:4) were lower in FLAX and FLAXCr compared to CTR (P < 0.05). Addition of Cr to a flaxseed-containing diet led to an increase in PE 36:4 (P < 0.05). A decrease in the transcription of ELOVL6 gene involved in de novo lipid synthesis was observed in FLAXCr (P = 0.01). An increase in the transcription of genes involved in FA oxidation (ACAA2, ACOX1) was observed in FLAX compared to FLAXCr (P = 0. 05; P = 0.02). A trend for a decrease in the transcription of FADS2 and HMGCS1 was observed in FLAXCr than CTR and FLAX (P = 0.06; 0.08). Transcription of other genes involved in de novo lipid synthesis (FASN, PPARA), FA oxidation (CPT1A, CPT2, ACAA1), and oxidative stress response (GPX1, NQO11, GSTA2, SLC40A1, NFE2L2) were not affected by the diets (P > 0.05). Lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS) in liver was reduced in FLAXCr than CTR (P < 0.05) and was not different from FLAX (P > 0.05). Serum cholesterol and aspartic aminotransferase were reduced in FLAX and FLAXCr compared to CTR (P < 0.05). The serum glucose level was decreased in FLAX compared to CTR (P < 0.05) and a trend in decrease was noticed in FLAXCr vs. CTR (P = 0.10). Serum TBARS were higher in CTR and FLAXCr compared to FLAX (P < 0.05). In conclusion, flaxseed supplementation enhances total and long-chain n-3 FA while reducing total lipids, saturated, and n-6 FA in the liver. Supplementing Cr along with flaxseed increased n-6 FA species in the hepatic PE and decreased the transcription of genes involved in FA oxidation and lipid synthesis.


Assuntos
Ácidos Graxos , Linho , Animais , Ácidos Graxos/metabolismo , Galinhas/genética , Galinhas/metabolismo , Linho/metabolismo , Fosfolipídeos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Metabolismo dos Lipídeos , Cromo/metabolismo , Dieta/veterinária , Fígado/metabolismo , Estresse Oxidativo , Ração Animal/análise , Suplementos Nutricionais
10.
Mol Microbiol ; 120(3): 425-438, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501506

RESUMO

In Staphylococcus aureus, genes that should confer the capacity to metabolize fatty acids by ß-oxidation occur in the fadXDEBA locus, but their function has not been elucidated. Previously, incorporation into phospholipid through the fatty acid kinase FakA pathway was thought to be the only option available for S. aureus to metabolize exogenous saturated fatty acids. We now find that in S. aureus USA300, a fadX::lux reporter was repressed by glucose and induced by palmitic acid but not stearic acid, while in USA300ΔfakA basal expression was significantly elevated, and enhanced in response to both fatty acids. When cultures were supplemented with palmitic acid, palmitoyl-CoA representing the first metabolite in the ß-oxidation pathway was detected in USA300, but not in a fadXDEBA deletion mutant USA300Δfad, which relative to USA300 exhibited increased incorporation of palmitic acid into phospholipid accompanied by a rapid loss of viability. USA300Δfad also exhibited significantly reduced viability in a murine tissue abscess infection model. Our data are consistent with FakA-mediated incorporation of fatty acids into phospholipid as a preferred pathway for metabolism of exogenous fatty acids, while the fad locus is critical for metabolism of palmitic acid, which is the most abundant free fatty acid in human plasma.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Animais , Camundongos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácido Palmítico/metabolismo , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo
11.
BMC Plant Biol ; 23(1): 370, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491206

RESUMO

BACKGROUND: Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT: Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS: Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfolipídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Triglicerídeos , Arabidopsis/metabolismo , Plantas/metabolismo , Sementes , Plantas Geneticamente Modificadas/metabolismo , Óleos de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo
12.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446342

RESUMO

The interplay between inflammatory and redox processes is a ubiquitous and critical phenomenon in cell biology that involves numerous biological factors. Among them, secretory phospholipases A2 (sPLA2) that catalyze the hydrolysis of the sn-2 ester bond of phospholipids are key players. They can interact or be modulated by the presence of truncated oxidized phosphatidylcholines (OxPCs) produced under oxidative stress from phosphatidylcholine (PC) species. The present study examined this important, but rarely considered, sPLA2 modulation induced by the changes in biophysical properties of PC vesicles comprising various OxPC ratios in mono- or poly-unsaturated PCs. Being the most physiologically active OxPCs, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) have been selected for our study. Using fluorescence spectroscopy methods, we compared the effect of OxPCs on the lipid order as well as sPLA2 activity in large unilamellar vesicles (LUVs) made of the heteroacid PC, either monounsaturated [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)], or polyunsaturated [1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC)] at a physiological temperature. The effect of OxPCs on vesicle size was also assessed in both the mono- and polyunsaturated PC matrices. Results: OxPCs decrease the membrane lipid order of POPC and PDPC mixtures with PGPC inducing a much larger decrease in comparison with POVPC, indicative that the difference takes place at the glycerol level. Compared with POPC, PDPC was able to inhibit sPLA2 activity showing a protective effect of PDPC against enzyme hydrolysis. Furthermore, sPLA2 activity on its PC substrates was modulated by the OxPC membrane content. POVPC down-regulated sPLA2 activity, suggesting anti-inflammatory properties of this truncated oxidized lipid. Interestingly, PGPC had a dual and opposite effect, either inhibitory or enhancing on sPLA2 activity, depending on the protocol of lipid mixing. This difference may result from the chemical properties of the shortened sn-2-acyl chain residues (aldehyde group for POVPC, and carboxyl for PGPC), being, respectively, zwitterionic or anionic under hydration at physiological conditions.


Assuntos
Biomimética , Fosfolipases A2 Secretórias , Fosforilcolina , Fosfatidilcolinas/química , Fosfolipídeos/metabolismo , Lecitinas
13.
Bioessays ; 45(9): e2300079, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345585

RESUMO

Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (like butter at room temperature) while unsaturated fatty acids (UFAs) form more fluid membranes (like vegetable oils). Proteins of the PAQR protein family, characterized by the presence of seven transmembrane domains and a cytosolic N-terminus, contribute to membrane homeostasis in bacteria, yeasts, and animals. These proteins respond to membrane rigidity by stimulating fatty acid desaturation and incorporation of UFAs into phospholipids and explain the ability of animals to thrive on diets with widely varied fat composition. Also see the video abstract here: https://youtu.be/6ckcvaDdbQg.


Assuntos
Proteínas de Membrana , Fosfolipídeos , Animais , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Dieta , Gorduras na Dieta
14.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049852

RESUMO

Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer's. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.


Assuntos
Ácidos Graxos Ômega-3 , Lisofosfatidilcolinas , Animais , Lisofosfatidilcolinas/química , Encéfalo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Ácido Eicosapentaenoico/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo
15.
mBio ; 14(1): e0307322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629455

RESUMO

The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human ß-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Enterococcus faecalis/metabolismo , Farmacorresistência Bacteriana , Fosfolipídeos/metabolismo , Anti-Infecciosos/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilgliceróis/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cátions/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Bactérias/metabolismo
16.
J Nutr Biochem ; 112: 109207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36402249

RESUMO

Squalene is a key minor component of virgin olive oil, the main source of fat in the Mediterranean diet, and had shown to improve the liver metabolism in rabbits and mice. The present research was carried out to find out whether this effect was conserved in a porcine model of hepatic steatohepatitis and to search for the lipidomic changes involved. The current study revealed that a 0.5% squalene supplementation to a steatotic diet for a month led to hepatic accumulation of squalene and decreased triglyceride content as well as area of hepatic lipid droplets without influencing cholesterol content or fiber areas. However, ballooning score was increased and associated with the hepatic squalene content. Of forty hepatic transcripts related to lipid metabolism and hepatic steatosis, only citrate synthase and a non-coding RNA showed decreased expressions. The hepatic lipidome, assessed by liquid chromatography-mass spectrometry in a platform able to analyze 467 lipids, revealed that squalene supplementation increased ceramide, Cer(36:2), and phosphatidylcholine (PC[32:0], PC[33:0] and PC[34:0]) species and decreased cardiolipin, CL(69:5), and triglyceride (TG[54:2], TG[55:0] and TG[55:2]) species. Plasma levels of interleukin 12p40 increased in pigs receiving the squalene diet. The latter also modified plasma lipidome by increasing TG(58:12) and decreasing non-esterified fatty acid (FA 14:0, FA 16:1 and FA 18:0) species without changes in total NEFA levels. Together this shows that squalene-induced changes in hepatic and plasma lipidomic profiles, non-coding RNA and anti-inflammatory interleukin are suggestive of an alleviation of the disease despite the increase in the ballooning score.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Esqualeno , Suínos , Camundongos , Animais , Coelhos , Esqualeno/metabolismo , Esqualeno/farmacologia , Lipidômica , Triglicerídeos/metabolismo , Fosfolipídeos/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Suplementos Nutricionais , RNA não Traduzido/metabolismo , RNA não Traduzido/farmacologia
17.
Mol Pharm ; 20(1): 82-89, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36480277

RESUMO

Phospholipids are lipids that constitute the basic structure of cell membranes. In-depth research has shown that in addition to supporting cell structures, phospholipids participate in multiple cellular processes, including promoting cell signal transduction, guiding protein translocation, activating enzymatic activity, and eliminating dysfunctional/redundant organelles/cells. Diabetes is a chronic metabolic disease with a complicated etiology and pathology. Studies have shown that the level of certain phospholipids, for example, the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in liver tissue, is negatively associated with insulin sensitivity. In addition, PS is a phospholipid exhibiting extensive cellular functions in diabetes. For this review, we analyzed many PS studies focusing on diabetes and insulin sensitivity in recent years and found that PS participates in controlling insulin secretion, regulating insulin signaling transduction, and participating in the progression of diabetic complications by mediating coagulation disorders in the microvasculature or targeting mitochondria. Moreover, PS supplements in food and PS-containing liposomes have been shown to protect against type 1 and type 2 diabetes (T1D and T2D, respectively) in animal studies. Therefore, by summarizing the regulatory roles played by PS in diabetes and the potential of successfully using PS or PS-containing liposomes for diabetic therapy, we hope to provide new ideas for further research into the mechanisms of diabetes and for drug development for treating diabetes and its complications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Lipossomos , Fosfatidilserinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fosfolipídeos/metabolismo , Fosfatidiletanolaminas
18.
J Proteome Res ; 21(12): 2958-2968, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322795

RESUMO

Escherichia coli is a ubiquitous group of bacteria that can be either commensal gut microbes or enterohemorrhagic food-borne pathogens. Regardless, both forms must survive acidic environments in the stomach and intestines to reach and colonize the gut, a process that partially relies on amino acid-dependent acid resistance (AR) mechanisms and modifications to membrane phospholipids. However, only the basic tenets of these mechanisms have been elucidated. In this paper, we aim to conduct a full-scale metabolic and lipidomic characterization of E. coli's adaptations to acid stress. We hypothesized that the use of untargeted metabolomics and lipidomics would reveal mechanisms downstream of AR processes that provide novel contributions to acid stress survival. We detected significant differences in the extracellular metabolome and the lipidome induced by amino acid supplementation (glutamine, arginine, or lysine) and contextualized these results using real-time quantitative polymerase chain reaction (RT-qPCR). We additionally identified several metabolic pathways as well as a significant alteration in phospholipid synthetic pathways induced by differential amino acid supplementation. These results demonstrate that AR may extend beyond canonical mechanisms to a coordinated metabolic phenotype. Future studies may benefit from our analysis to further elucidate distinct targets for prebiotic supplements to cultivate commensal strains or therapies to combat pathogenic ones.


Assuntos
Escherichia coli , Lipidômica , Escherichia coli/metabolismo , Metabolômica/métodos , Metaboloma , Ácidos , Aminoácidos/metabolismo , Fosfolipídeos/metabolismo
19.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233162

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Various mechanisms such as an increased uptake in fatty acids or de novo synthesis contribute to the development of steatosis and progression to more severe stages. Furthermore, it has been shown that impaired lipophagy, the degradation of lipids by autophagic processes, contributes to NAFLD. Through an unbiased lipidome analysis of mouse livers in a genetic model of impaired lipophagy, we aimed to determine the resulting alterations in the lipidome. Observed changes overlap with those of the human disease. Overall, the entire lipid content and in particular the triacylglycerol concentration increased under conditions of impaired lipophagy. In addition, we detected a reduction in long-chain polyunsaturated fatty acids (PUFAs) and an increased ratio of n-6 PUFAs to n-3 PUFAs, which was due to the depletion of n-3 PUFAs. Although the abundance of major phospholipid classes was reduced, the ratio of phosphatidylcholines to phosphatidylethanolamines was not affected. In conclusion, this study demonstrates that impaired lipophagy contributes to the pathology of NAFLD and is associated with an altered lipid profile. However, the lipid pattern does not appear to be specific for lipophagic alterations, as it resembles mainly that described in relation to fatty liver disease.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
20.
Biochimie ; 203: 65-76, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243173

RESUMO

Pollen tubes display polarized tip-growth and are a model to study the coordination of vesicular trafficking and cytoskeletal control. The molecular details of how dynamic actin filaments associate with the plasma membrane are currently unclear. In Arabidopsis thaliana, plasma membrane attachment of actin filaments may be mediated by four myosins representing the plant-specific myosin-subclass VIII, which localize to the plasma membrane and display only minor motor-activity. Here we explore the mode of membrane attachment of the pollen-expressed class VIII-myosins ATM2 and VIII-B through interaction with anionic membrane phospholipids. A fluorescent mCherry-ATM2-fusion decorated plasma membrane-peripheral actin filaments when expressed in tobacco pollen tubes, consistent with a role of class VIII-myosins at the membrane-cytoskeleton interface. As recombinant proteins, class VIII-myosins are prone to aggregation and to proteolysis, creating a challenge for their biochemical characterization. We describe a purification scheme for guanidinium chloride (GdmCl)-denatured recombinant proteins, followed by a renaturation protocol to obtain pure, soluble protein fragments of ATM2 and VIII-B. The fragments represent the C-terminal tail and coiled-coil-regions and lack the N-terminal actin-binding regions, IQ or motor domains. Based on lipid-overlays and liposome-sedimentation assays, the fragments of ATM2 and VIII-B bind anionic phospholipids. Small polybasic regions at the extreme C-termini were sufficient for lipid-binding of the respective protein fragments. When expressed in tobacco pollen tubes, a fluorescence-tagged variant of ATM2 lacking its lipid-binding region displayed substantially reduced plasma membrane association. The data indicate that class VIII-myosins may facilitate actin-plasma membrane attachment through interaction with anionic phospholipids, mediated by polybasic C-terminal lipid-binding domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Actinas/metabolismo , Fosfolipídeos/metabolismo , Miosinas/química , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Pólen/metabolismo , Nicotiana/metabolismo , Membrana Celular/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA