Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609238

RESUMO

Our previous study indicated that whey protein hydrolysate (WPH) showed effective anti-fatigue properties, but its regulatory mechanism on recovery from exercise in mice is unclear. In the present study, we divided the mice into control, WP, and WPH groups and allowed them to rest for 1 h and 24 h after exercise, respectively. The changes in muscle metabolites of mice in the recovery period were investigated using metabolomics techniques. The results showed that the WPH group significantly up-regulated 94 muscle metabolites within 1 h of rest, which was 1.96 and 2.61 times more than the control and WP groups, respectively. In detail, significant decreases in TCA cycle intermediates, lipid metabolites, and carbohydrate metabolites were observed in the control group during exercise recovery. In contrast, administration with WP and WPH enriched more amino acid metabolites within 1 h of rest, which might provide a more comprehensive metabolic environment for muscle repair. Moreover, the WPH group remarkably stimulated the enhancement of lipid, carbohydrate, and vitamin metabolites in the recovery period which might provide raw materials and energy for anabolic reactions. The result of the western blot further demonstrated that WPH could promote muscle repair via activating the Sestrin2/Akt/mTOR/S6K signaling pathway within 1 h of rest. These findings deepen our understanding of the regulatory mechanisms by WPH to promote muscle recovery and may serve as a reference for comprehensive assessments of protein supplements on exercise.


Assuntos
Hidrolisados de Proteína , Soro do Leite , Animais , Camundongos , Proteínas do Soro do Leite , Músculos , Carboidratos , Lipídeos
2.
Mar Drugs ; 22(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667779

RESUMO

With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.


Assuntos
Osso e Ossos , Suplementos Nutricionais , Minerais , Alimentos Marinhos , Animais , Osso e Ossos/metabolismo , Hidrólise , Salmão/metabolismo , Disponibilidade Biológica , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hidrolisados de Proteína/química , Pós
3.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488738

RESUMO

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , Etanol
4.
J Sci Food Agric ; 104(11): 6676-6686, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545944

RESUMO

BACKGROUND: Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS: Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION: Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.


Assuntos
Arachis , Cálcio , Peptídeos , Proteínas de Plantas , Hidrolisados de Proteína , Arachis/química , Peptídeos/química , Hidrolisados de Proteína/química , Humanos , Cálcio/química , Células CACO-2 , Proteínas de Plantas/química , Quelantes/química , Quelantes de Cálcio/química , Disponibilidade Biológica
5.
Food Chem ; 447: 138873, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452536

RESUMO

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Assuntos
Hidrolisados de Proteína , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peptídeos/farmacologia , Peptídeos/química , Músculos/metabolismo , Íons , Angiotensinas , Peptidil Dipeptidase A/metabolismo
6.
Food Chem ; 446: 138763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428077

RESUMO

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Assuntos
Cálcio , Osteoporose , Ratos , Animais , Ovinos , Cálcio/metabolismo , Hidrolisados de Proteína/farmacologia , Cloreto de Cálcio/farmacologia , Cálcio da Dieta , Densidade Óssea , Osteoporose/metabolismo , Dieta
7.
J Sci Food Agric ; 104(9): 5541-5552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362946

RESUMO

BACKGROUND: Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS: The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 µm (day 0) to 2.01 ± 0.04 µm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION: The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.


Assuntos
Emulsões , Óleos de Peixe , Helianthus , Olea , Oxirredução , Proteínas de Plantas , Hidrolisados de Proteína , Sementes , Emulsões/química , Helianthus/química , Olea/química , Hidrolisados de Proteína/química , Óleos de Peixe/química , Sementes/química , Proteínas de Plantas/química , Água/química , Antioxidantes/química , Hidrólise , Emulsificantes/química
8.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
9.
Food Res Int ; 177: 113836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225113

RESUMO

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Assuntos
Anti-Hipertensivos , Antioxidantes , Benzotiazóis , Polissacarídeos Bacterianos , Ácidos Sulfônicos , Anti-Hipertensivos/química , Antioxidantes/análise , Hidrólise , Inibidores da Enzima Conversora de Angiotensina/química , Pectinas/análise , Hidrolisados de Proteína/química , Peptídeos/química , Grão Comestível/química , Coloides/análise
10.
Food Chem ; 442: 138428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241997

RESUMO

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.


Assuntos
Proteínas de Soja , Paladar , Hidrólise , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Papaína/química , Hidrolisados de Proteína/química
11.
Food Chem ; 439: 138161, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070233

RESUMO

In this work, the biological properties of fractionated Riceberry bran protein hydrolysate obtained by ultrafiltration (URBPH) were evaluated and the possibility of using cluster dextrin to produce hydrolysate powder by spray-drying was investigated. Fractionation into peptides < 3 kDa was observed to improve antioxidant activity. URBPH < 3 kDa was then freeze-dried (FD-URBPH) and spray-dried (SD-URBPH) at different inlet air temperatures of 100-160 °C. The water solubility and antioxidant activity of FD-URBPH were higher than those of SD-URBPH. Nevertheless, encapsulation of hydrolysate with 10% cluster dextrin and an inlet temperature of 120 °C was also successful in maintaining protein qualities, which showed high 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS•+) scavenging activity (89.14%) and water solubility index (92.49%) and low water activity (aw = 0.53). Moreover, encapsulation preserved the antioxidant activity of peptides during gastrointestinal digestion better than the free form. URBPH and its spray-dried microcapsules could be used as bioactive ingredients in functional drinks or foods.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Antioxidantes/química , Bromelaínas , Pós , Dextrinas , Peptídeos , Água
12.
Food Chem ; 437(Pt 2): 137906, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37939420

RESUMO

This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (∼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.


Assuntos
Bromelaínas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Bromelaínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Paladar , Papaína/metabolismo , Hidrólise , Ácido Glutâmico , Hidrolisados de Proteína/química
13.
Mar Drugs ; 21(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37999403

RESUMO

Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.


Assuntos
Euphausiacea , Hidrolisados de Proteína , Animais , Humanos , Hidrolisados de Proteína/química , Euphausiacea/química , Cálcio , Células CACO-2 , Peptídeos/química , Regiões Antárticas
14.
Int J Biol Macromol ; 253(Pt 5): 127244, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806416

RESUMO

Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.


Assuntos
Bromelaínas , Peptídeos , Hidrólise , Bromelaínas/química , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/química , Hidrolisados de Proteína/química
15.
J Agric Food Chem ; 71(44): 16618-16629, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874351

RESUMO

Iron is one of the trace mineral elements, and iron deficiency is a common phenomenon that negatively influences human health. Food-derived iron supplements were considered excellent candidates for improving this syndrome. In this work, oyster-protein hydrolysates (OPH) and ferrous chloride successfully formed the OPH-Fe complex (6 mg/mL, 40 °C, 30 min), where the main binding sites involved were the carboxyl and amino groups. The OPH-Fe complex showed no obvious changes in the secondary structure, while the iron changed the morphological appearance and also showed fluorescence quenching, an ultraviolet shift, and an increase in size distribution. The OPH-Fe complex showed better dynamic absorption of iron (64.11 µmol/L) than ferrous sulfate (46.90 µmol/L), and the medium dose had better protective effects against iron-deficiency anemia in vivo. Three representative peptides (DGKGKIPEE, FAGDDAPRA, and VLDSGDGVTH) that were absorbed intact were identified. This experiment provided a theoretical foundation for further study of the digestion and absorption of the OPH-Fe complex.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Ostreidae , Camundongos , Humanos , Animais , Ferro/metabolismo , Hidrolisados de Proteína/química , Compostos Ferrosos , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/prevenção & controle , Anemia Ferropriva/metabolismo , Ostreidae/metabolismo
16.
Food Res Int ; 173(Pt 2): 113473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803796

RESUMO

This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, ß-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.


Assuntos
Antioxidantes , Bromelaínas , Antioxidantes/farmacologia , Antioxidantes/química , Glycine max/metabolismo , Papaína/química , Hidrolisados de Proteína/química , Proteínas de Soja , Aminoácidos , Subtilisinas/química
17.
Eur J Pediatr ; 182(12): 5701-5705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776354

RESUMO

The 2017 European Food Safety Authority (EFSA) recommendation of an acceptable daily intake (ADI) of 30 mg glutamic acid/kg bw/day did not take into consideration the primary energy sources during infancy, including infant formulas. In the present study, we determined total daily intakes of glutamic acid in a contemporary cohort of healthy infants who were fed either cow milk formula (CMF) or extensive protein hydrolysate formula (EHF); the formulas differed substantially in glutamic acid content. The infants (n = 141) were randomized to be fed either CMF or EHF. Dietary intakes were determined from weighed bottle methods and/or prospective diet records, and body weights were measured on 14 occasions from 0.5 to 12.5 months. Secondary data analysis determined the glutamic acid content of the diet over time. The trial was registered at  http://www. CLINICALTRIALS: gov/ as NCT01700205, 3 October 2012. Glutamic acid intake from formula and other foods was significantly higher in infants fed EHF when compared to CMF. As glutamic acid intake from formula decreased, intake from other nutritional sources steadily increased from 5.5 months. Regardless of formula type, every infant exceeded the ADI of 30 mg/kg bw/day from 0.5 to 12.5 months.   Conclusion: Given that the ADI recommendation was not based on actual intake data of primary energy sources during infancy, the present findings on the growing child's ingestion of glutamic acid from infant formula and the complementary diet may be of interest when developing future guidelines and communications to parents, clinical care providers, and policy makers. WHAT IS KNOWN: • The 2017 re-evaluation of the safety of glutamic acid-glutamates and the recommended acceptable daily intake (ADI) of 30 mg/kg bw/d by the European Food Safety Authority (EFSA) did not include actual intake data of the primary energy sources during infancy. WHAT IS NEW: • During the first year, glutamic acid intake from infant formula and other food sources exceeded the ADI of 30 mg/kg bw/day.


Assuntos
Ácido Glutâmico , Fórmulas Infantis , Lactente , Feminino , Animais , Bovinos , Criança , Humanos , Estudos Prospectivos , Nível de Efeito Adverso não Observado , Leite , Hidrolisados de Proteína , Fenômenos Fisiológicos da Nutrição do Lactente
18.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1502-1516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431590

RESUMO

A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.


Assuntos
Azadirachta , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Ciclídeos/fisiologia , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desenvolvimento Econômico , Resistência à Doença , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
19.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446924

RESUMO

Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.


Assuntos
Cucumaria , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pepinos-do-Mar/metabolismo , Hidrolisados de Proteína/farmacologia , LDL-Colesterol , Peptidil Dipeptidase A/metabolismo
20.
J Agric Food Chem ; 71(31): 11970-11981, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493196

RESUMO

A novel calcium-binding peptide was purified from peanut protein hydrolysate using gel filtration chromatography and identified using HPLC-MS/MS. Its amino acid sequence was determined as Phe-Pro-Pro-Asp-Val-Ala (FPPDVA, named as FA6) with the calcium-binding capacity of 15.67 ± 0.39 mg/g. Then, the calcium chelating characteristics of FPPDVA were investigated using ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, particle size, and zeta potential. The results showed that FPPDVA interacted with calcium ions, the chelation of calcium ions induced FPPDVA to fold and form a denser structure, the calcium-binding sites may mainly involve oxygen atoms from the carboxyl residues of Asp and Ala, and Phe possessed contact energy and carbonyl residues of Val. Microstructure analysis showed that FPPDVA-calcium chelate exhibited a regularly ordered and tightly aggregated sheets or block structures. Additionally, FPPDVA-calcium chelate had good gastrointestinal digestive stability and thermal stability. The results of everted rat intestinal sac and Caco-2 cell monolayer experiments showed that FPPDVA-calcium chelate could promote calcium absorption and transport through the Cav1.3 and TRPV6 calcium channels. These data suggest that FPPDVA-calcium chelate possesses the potential to be developed and applied as calcium supplement.


Assuntos
Arachis , Cálcio , Humanos , Animais , Ratos , Cálcio/metabolismo , Arachis/metabolismo , Hidrolisados de Proteína/química , Células CACO-2 , Espectrometria de Massas em Tandem , Peptídeos/química , Cálcio da Dieta/metabolismo , Quelantes/química , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA