Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 446: 138763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428077

RESUMO

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Assuntos
Cálcio , Osteoporose , Ratos , Animais , Ovinos , Cálcio/metabolismo , Hidrolisados de Proteína/farmacologia , Cloreto de Cálcio/farmacologia , Cálcio da Dieta , Densidade Óssea , Osteoporose/metabolismo , Dieta
2.
Food Chem ; 447: 138873, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452536

RESUMO

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Assuntos
Hidrolisados de Proteína , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peptídeos/farmacologia , Peptídeos/química , Músculos/metabolismo , Íons , Angiotensinas , Peptidil Dipeptidase A/metabolismo
3.
Food Funct ; 14(17): 7882-7896, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37489104

RESUMO

Our previous study evaluated the antioxidant and anti-inflammatory activities of selenium-enriched soybean peptides (SePPs) in vivo. In this study, we purified SePPs via gel filtration chromatography and obtained five fractions (F1, F2, F3, F4 and F5), among which F3 displayed the highest antioxidant and anti-inflammatory activities. Nineteen selenium-enriched peptides were identified in F3 by mass spectrometry. Two selenium-enriched peptides with sequences ESeCQIQKL (Sep-1) and SELRSPKSeC (Sep-2) were selected for synthesis based on their score and the number of hydrophobic amino acids, acidic and basic amino acids. Both Sep-1 and Sep-2 exhibited preventive effects on the heat stress-induced impairment of intestinal epithelial cell integrity, oxidative stress and inflammatory responses in a Caco-2 cell model. Pretreatment of the cells with Sep-1 or Sep-2 for 24 h reduced intracellular reactive oxygen species (ROS) generation, prevented the disruption of tight junction (TJ) proteins, and decreased paracellular permeability. Western blot results showed that Sep-1 and Sep-2 could improve the abnormal expressions of Nrf2, Keap1, NLRP3, caspase-1 and ASC/TMS1, thereby enhancing the glutathione (GSH) redox system and reducing IL-1ß and IL-18 concentrations. Sep-1 activated the Nrf2-Keap1 signaling pathway significantly more than Sep-2. Molecular docking results indicated that Sep-1 and Sep-2 are both bound to Keap1 and NLRP3 in the form of hydrogen bonds, hydrophobic interactions and salt bridges, which interferes with Nrf2 and NLRP3 signaling. Molecular dynamics simulations suggested that more hydrogen bonds were formed during the resultant process of Sep-1 with Keap1, and the compactness and stability of the complex structure were better than those of Sep-2. These findings confirm the value of both Sep-1 and Sep-2 in the development of dietary supplements as potential alternatives for heat damage and related disease prevention.


Assuntos
Antioxidantes , Selênio , Humanos , Antioxidantes/química , Selênio/farmacologia , Selênio/metabolismo , Células CACO-2 , Glycine max/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Glutationa/metabolismo
4.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446924

RESUMO

Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.


Assuntos
Cucumaria , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pepinos-do-Mar/metabolismo , Hidrolisados de Proteína/farmacologia , LDL-Colesterol , Peptidil Dipeptidase A/metabolismo
5.
Sci Rep ; 13(1): 12280, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507421

RESUMO

This study is aimed to investigate whether tuna protein hydrolysate (TPH) supplementation could alleviate cardiovascular complications induced by a high-fat diet (HFD) in rats. Rats were fed a HFD for 16 weeks and given TPH (100 mg/kg, 300 mg/kg, or 500 mg/kg) or metformin (100 mg/kg) (n = 8) for the last four weeks. TPH had the following effects: resolved their impaired glucose tolerance, hyperglycemia, dyslipidemia, obesity, and hypertension (p < 0.05); alleviated left ventricular dysfunction and hypertrophy (p < 0.05), and vascular dysfunction and hypertrophy (p < 0.05); adipocyte hypertrophy; increases in circulating leptin and tumor necrosis factor (TNF-α) were mitigated (p < 0.05); increased renin-angiotensin system (RAS), oxidative stress, and decreased nitric oxide metabolites were modulated (p < 0.05). TPH restored the expression of angiotensin II receptor type 1 (AT1R)/NADPH oxidase 2 (NOX2), endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor γ (PPARγ)/the nuclear factor kappa B (NF-κB) protein in cardiovascular tissue (p < 0.05). In metabolic syndrome (MS) rats, metformin and TPH had comparable effects. In conclusion, TPH alleviated cardiovascular complications related to MS. It suppressed RAS, oxidative stress, and inflammation that were associated with modulation of AT1R/NOX2, eNOS, Nrf2/HO-1, and PPARγ/NF-κB expression.


Assuntos
Dieta Hiperlipídica , Hidrolisados de Proteína , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Atum/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Suplementos Nutricionais , Hipertrofia
6.
Mar Drugs ; 21(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367668

RESUMO

Obesity and type 2 diabetes are characterized by low-grade systemic inflammation and glucose intolerance, which can be partially controlled with nutritional interventions. Protein-containing nutritional supplements possess health-promoting benefits. Herein, we examined the effect of dietary supplementation with protein hydrolysates derived from fish sidestreams on obesity and diabetes, utilizing a mouse model of High-Fat Diet-induced obesity and type 2 diabetes. We examined the effect of protein hydrolysates from salmon and mackerel backbone (HSB and HMB, respectively), salmon and mackerel heads (HSH and HMH, respectively), and fish collagen. The results showed that none of the dietary supplements affected weight gain, but HSH partially suppressed glucose intolerance, while HMB and HMH suppressed leptin increase in the adipose tissue. We further analyzed the gut microbiome, which contributes to the metabolic disease implicated in the development of type 2 diabetes, and found that supplementation with selected protein hydrolysates resulted in distinct changes in gut microbiome composition. The most prominent changes occurred when the diet was supplemented with fish collagen since it increased the abundance of beneficial bacteria and restricted the presence of harmful ones. Overall, the results suggest that protein hydrolysates derived from fish sidestreams can be utilized as dietary supplements with significant health benefits in the context of type 2 diabetes and diet-induced changes in the gut microbiome.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerância à Glucose , Resistência à Insulina , Camundongos , Animais , Intolerância à Glucose/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Camundongos Obesos , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Suplementos Nutricionais , Dieta Hiperlipídica/efeitos adversos , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
7.
J Vet Med Sci ; 85(7): 727-734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225448

RESUMO

Oxidative stress is defined as an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms of the body. An overproduction of ROS leads to lipid and protein oxidation, injuring the cells both in normal and pathological conditions. Rice bran protein hydrolysates (RBH) has potent antioxidant, anti-inflammatory, anti-angiotensin converting enzyme (ACE) and hypolipidemic effects. Little is known, however, about the effects of RBH in dogs. The present study evaluated the antioxidative, anti-ACE and metabolic effects of RBH in adult dogs. Eighteen adult dogs were divided into 2 groups: control (n=7) and RBH supplemented groups (n=11), received a diet with the same nutritional compositions. The RBH supplemented group was fed with RBH 500 mg/kg body weight (BW) mixed with food for 30 days. BW, blood glucose, lipid profiles, liver enzymes, electrocardiography (ECG), plasma ACE activity, oxidative stress and antioxidant biomarkers were determined on day 0 and day 30 of supplementation periods. Results showed that RBH decreased oxidative stress and increased antioxidant biomarkers by significantly reducing plasma malondialdehyde (MDA) and protein carbonyl, enhanced blood glutathione (GSH) and improved the GSH redox ratio. Moreover, decreased LDL-C and increased HDL-C levels were found after RBH supplementation whereas BW, blood glucose, liver enzymes, plasma ACE activity, plasma catalase (CAT) and superoxide dismutase (SOD) activity and cardiac function were not significantly changed. These results suggest that RBH may help to lower the risk of oxidative stress and dyslipidemia in adult dogs.


Assuntos
Antioxidantes , Oryza , Cães , Animais , Antioxidantes/farmacologia , Oryza/metabolismo , Espécies Reativas de Oxigênio , Glicemia , Estresse Oxidativo , Catalase , Suplementos Nutricionais , Glutationa , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Lipídeos/farmacologia , Superóxido Dismutase/metabolismo
8.
Curr Pharm Des ; 29(9): 675-685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021416

RESUMO

BACKGROUND: The antioxidant properties of active peptides from silkworm pupae protein hydrolysate are of interest, and it serves as a novel source of calcium supplement. METHODS: Optimize the preparation parameters of silkworm pupae bioactive peptide-calcium chelate, and investigate the mechanism and bioavailability of silkworm pupae active peptide as a transport carrier to promote calcium ion absorption using simulated gastrointestinal digestion and Caco-2 monolayer cell model. RESULTS: The optimal process parameters for preparing peptide calcium chelate were the peptide calcium mass ratio of 3:1, pH of 6.7, a temperature of 35.6°C, and time of 32.8 min by Box-Behnken design, and the calciumchelating rate reached 84.67%. The DPPH radical scavenging activity of silkworm pupae protein hydrolysatecalcium chelate was 79.36 ± 4.31%, significantly higher than silkworm pupae protein hydrolysate (61.00 ± 9.56%). Fourier transform infrared spectroscopy shows that the COO-, N-H, C-H, and C-O groups participated in the formation of silkworm pupae protein hydrolysate-calcium chelate. The particle size of the silkworm pupae protein hydrolysate-calcium chelate was 970.75 ± 30.12 nm, which was significantly higher than that of silkworm pupae protein hydrolysate (253.14 ± 5.72 nm). The silkworm pupae protein hydrolysate-calcium chelate showed a calcium dissolution rate of 71.01 ± 1.91% in the simulated intestinal phase, significantly higher than that of CaCl2 (59.34 ± 1.24%). In the Caco-2 cell monolayers, the silkworm pupae protein hydrolysatecalcium chelate was more favorable for calcium transport. CONCLUSION: A novel silkworm pupa protein hydrolysate-calcium chelate with high antioxidant activity was successfully prepared to improve the bioavailability of calcium.


Assuntos
Bombyx , Cálcio , Humanos , Animais , Cálcio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Pupa/metabolismo , Disponibilidade Biológica , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Bombyx/metabolismo , Células CACO-2 , Peptídeos/química
9.
Crit Rev Food Sci Nutr ; 63(7): 964-974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34319174

RESUMO

The quality of the existing evidence on the effects of protein hydrolysate supplementation on fat-free mass (FFM) and upper and lower body strength under resistance exercise intervention has not been evaluated. We conducted a structured literature search in PubMed, Web of Science, Cochrane Library, and Scopus database. A random effect model was used with continuous data of FFM and upper and lower body strength for healthy participants over 18 years old who received resistance training for ≥4 weeks and took protein hydrolysate or equivalent control supplements. Sensitivity and subgroup analyses were also conducted. Data from 330 participants in eight studies showed that supplemental protein hydrolysate had a positive effect on the FFM (n = 13, SMD = 0.36, 95% confidence interval (CI): 0.16-0.56, P = 0.000) and lower (n = 7, SMD = 0.43, 95% CI: 0.16-0.69, P = 0.001) and upper (n = 5, SMD = 0.17, 95% CI: -0.06-0.41, P = 0.145) body strength of resistance-trained individuals compared with placebo, showing an increase in physical fitness and muscle strength. However, the current evidence is insufficient to establish ingestion recommendations.


Assuntos
Hidrolisados de Proteína , Treinamento Resistido , Humanos , Adolescente , Hidrolisados de Proteína/farmacologia , Força Muscular/fisiologia , Suplementos Nutricionais
10.
Food Chem ; 402: 134192, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179519

RESUMO

This study aims to investigate the potentials of mature (MSPHs) and young (YSPHs) soybean enzymatic protein hydrolysates for the inhibition of pancreatic lipase (PL) and cholesterol esterase (C-Ease) enzymes. Higher proteins degradation levels were recorded with Bromelain compared to Flavourzyme and Alcalase, and upon hydrolysis, improved PL and C-Ease inhibition performances were displayed compared to unhydrolyzed proteins. Afterwards, six PHs with potent anti-lipidemic activities were selected for sequencing using LC-MS QTOF and molecular binding studies. Peptides FPFPRPPHQ, QCCAFEM, FAPEFLK from MSPHs and SFFFPFELPRE, FMYL, PFLL, FPLL, LPHF from YSPHs were predicted to possess potent inhibitory activities against PL. Furthermore, FPFPRPPHQ, FMYL, MMLM from MSPHs, and SFFFPFELPRE from YSPHs were predicted to be potent inhibitors of C-Ease. FPFPRPPHQ and SFFFPFELPRE derived from MSPHs and YSPHs, respectively, demonstrated effective inhibition potentialities against both PL and C-Ease. Therefore, mature and young soybean-derived protein hydrolysates could be recognized as a potential ingredient in the management of hypercholesterolemia.


Assuntos
Bromelaínas , Hidrolisados de Proteína , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Glycine max/metabolismo , Esterol Esterase , Peptídeos/química , Subtilisinas/química , Hidrólise , Lipase
11.
Plant Physiol Biochem ; 194: 326-334, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459867

RESUMO

Citrullus colocynthis (Colocynth) has gained a great deal of interest in their applications as indigenous nutraceutical and as a functional food ingredient. The intact colocynth seed protein was enzymatically hydrolyzed using proteolytic enzymes (alcalase, bromelain, and chymotrypsin) at different time intervals of 3, 6, and 9 h. The highest degree of hydrolysis (87.82%) was observed in chymotrypsin derived colocynth seed protein hydrolysates (CSPH) for 9 h. The CSPHs was further investigated through in-vitro assay to explore its potential biological activity such as antioxidant, inhibition of enzymatic marker related to diabetes (DPP-IV, α-glucosidase and α-amylase) and hyperlipidaemia (cholesteryl esterase and pancreatic lipase). Chymotrypsin hydrolysate showed the strongest DPPH (65.7 mM TEAC) and ABTS (525.2 mM TEAC) radical scavenging activity after 6 h of hydrolysis. Moreover, chymotrypsin-treated CSPH for 6 h inhibited cholesteryl esterase (IC50 = 13.68 µg/mL) and pancreatic lipase (IC50 = 14.12 µg/mL) significantly when compared to native protein. Whereas, bromelain and alcalase treated hydrolysate for 6 h effectively inhibited α-glucosidase and α-amylase at an inhibitory concentration of IC50 = 13.27 µg/mL and of IC50 = 17 µg/mL. Overall, the findings indicated that protein hydrolysates exhibited superior biological activity than intact colocynth seed proteins isolate (CSPI) and could be a sustainable source of bioactive peptides.


Assuntos
Bromelaínas , Citrullus colocynthis , Bromelaínas/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Quimotripsina , alfa-Glucosidases , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Amilases , Lipase , Subtilisinas , Sementes
12.
J Food Biochem ; 46(12): e14493, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309949

RESUMO

Potential anti-inflammatory effects of ark shell (Scapharca subcrenata) protein hydrolysates were investigated. Ark shell protein hydrolysates were prepared using Alcalase® and pepsin and were designated ASAH and ASPH, respectively. The nitric oxide (NO) inhibitory activity of ASAH and ASPH was determined in lipopolysaccharides (LPS)-stimulated RAW264.7 murine macrophages, and the results showed that ASAH inhibited better NO inhibitory activity than ASPH. ASAH suppressed inflammatory mediator, a prostaglandin E2, secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), and production of reactive oxygen species (ROS) dose dependently. It inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and simulated heme oxygenase-1 (HO-1) protein expression. However, the pharmacological approach revealed that pretreatment with zinc protoporphyrin ІX (ZnPP), an inhibitor of HO-1, reversed the anti-inflammatory effect of ASAH. Moreover, ASAH upregulated phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38 MAPK. To find out the role of MAPKs phosphorylation, MAPKs inhibitors were used, and the results showed that ASAH-mediated HO-1 protein expression and Nrf2 nuclear translocation were abolished. Taken all together, this study revealed that ASAH has a potential anti-inflammatory activity through regulation of the MAPK-dependent HO-1/Nrf2 pathway. PRACTICAL APPLICATIONS: Food-derived marine bioactive peptides, due to their pivotal role in biological activities, are gaining much attention recently. However, the anti-inflammatory activities of ark shell protein hydrolysates still remain to be investigated. This study investigated that ASAH shows potential anti-inflammatory activities through regulation of the MAPK-dependent HO-1/Nrf2 pathway in RAW264.7 murine macrophages. These findings indicated that ASAH may be used as a dietary supplement, functional food, and medicinal drug for the management of inflammation and inflammation-associated diseases.


Assuntos
Arcidae , Scapharca , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Arcidae/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Células RAW 264.7 , Scapharca/metabolismo
13.
J Agric Food Chem ; 70(20): 6123-6133, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576531

RESUMO

The present study sought to identify and characterize a novel antimicrobial peptide, named MOp2 from Moringa oleifera seed protein hydrolysates, and elucidate its potential antimicrobial effects on Staphylococcus aureus. MOp2, with the amino acid sequence of His-Val-Leu-Asp-Thr-Pro-Leu-Leu (HVLDTPLL), was characterized as a hydrophobic anionic AMP of the ß-sheet structure. MOp2 exhibited negligible hemolytic activity at 2.0× MIC, suggesting its inhibitory effect on the growth of S. aureus (MIC: 2.204 mM). It maintained more than 90% of antimicrobial activity under 5% salt and about 78% of antimicrobial activity at a high temperature of 115 °C for 30 min. Protease, especially acid protease, reduced its antimicrobial activity to different extents. Moreover, MOp2 caused irreversible membrane damage to S. aureus cells by increasing the membrane permeability, resulting in the release of intracellular nucleotide pools. Additionally, molecular docking revealed that MOp2 could inhibit S. aureus growth by interacting with dihydrofolate reductase and DNA gyrase through hydrogen bonding and hydrophobic interactions. Overall, MOp2 could be a potential novel antimicrobial agent against S. aureus in food processing.


Assuntos
Peptídeos Antimicrobianos , Moringa oleifera , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Moringa oleifera/química , Peptídeo Hidrolases/análise , Extratos Vegetais/química , Hidrolisados de Proteína/farmacologia , Sementes/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/metabolismo
14.
Biomed Res Int ; 2022: 4492132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386305

RESUMO

Background: Obesity induced by excessive nutrients can cause fatty liver and metabolic dysfunction, which leads to hepatic dysfunction and local/systemic inflammatory responses. Previously, we analyzed the antioxidant, antilipotoxicity, and anti-inflammatory effects of protein hydrolysates in vitro. The aim of the present study is to investigate the antiobesity and hepatoprotective effects of protein hydrolysates derived from Protaectia brevitas (PHPB) in an obese mouse model. Methods: For this in vivo study, 40 mice were included and divided into four groups: (1) normal diet group, (2) high-fat-diet (ctrl(-)) group, (3) high-fat-diet and silymarin-treated (ctrl(+)) group, and (4) high-fat-diet and PHPB-treated group. After 6 weeks of treatment, body weight and the amount of daily food intake were observed. Moreover, the major organs and blood of animals were collected for the analysis of serum chemistry, histopathological examination, and obesity- and inflammation-related gene expressions. Results: The body weight and the amount of daily food intake significantly decreased in the PHPB-treated group compared with those in the ctrl(-) group. The levels of serum ALT, AST, ALP, creatinine, blood urea nitrogen, glucose, bilirubin, total cholesterol, TG, low-density lipoprotein, IL-6, TNF-α, and IGF-1 significantly reduced in the PHPB-treated group, whereas the serum free fatty acid, albumin, high-density lipoprotein, and adiponectin concentrations increased. In the analysis of weight of the liver, kidney, lungs, spleen, and fat tissues (from epididymal, perirenal, and mesentery tissues), the PHPB-treated group showed decreased values compared with the ctrl(-) group. In the histopathological analysis, the PHPB-treated group showed significantly reduced macrovesicular fatty change and inflammatory cell infiltration in the liver, and the size of the adipocyte in the epididymis also significantly decreased. The obesity- and inflammation-related gene (IL-6, TNF-α, IGF-1, leptin, AP2/FABP4, AMPK-α2, ß3AR, and PPAR-γ) expressions in the liver and epididymal adipose tissue were reduced in the PHPB-treated group. Conclusions: Overall, the results of this study suggest that the protein hydrolysates that derived from Protaectia brevitas produce antiobesity and hepatoprotective effects via anti-inflammatory activities.


Assuntos
Fármacos Antiobesidade , Fígado Gorduroso , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Inflamação/patologia , Fator de Crescimento Insulin-Like I , Interleucina-6 , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
15.
Food Funct ; 13(6): 3481-3494, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35246675

RESUMO

Moringa oleifera seed protein hydrolysates exhibit good hypoglycemic activity, but their specific peptide components have not yet been characterized. Here, we identified the ultrafiltration peptide components (<3 kDa) of M. oleifera seed protein hydrolysates. A highly active α-glucosidase inhibitory peptide with an IC50 value of 109.65 µM (MoHpP-2) with the amino acid sequence KETTTIVR was identified. We characterized its structural properties, stability, and hypoglycemic activity. MoHpP-2 was found to be an amphipathic peptide with a ß-turn structure, and the hemolysis of red blood cells was not observed when its concentration was lower than 2 mg mL-1. MoHpP-2 was stable under weakly acidic conditions, at temperatures lower than 60 °C, and at high ion concentrations. Western blotting revealed that MoHpP-2 affected the PI3K and AMPK pathways of HepG2 cells. Molecular docking revealed that MoHpP-2 interacted with α-glucosidase through hydrogen bonding and hydrophobic forces. Thus, MoHpP-2 from M. oleifera seeds could be used to make hypoglycemic functional foods.


Assuntos
Moringa oleifera , Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Moringa oleifera/química , Peptídeos/análise , Peptídeos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/farmacologia , Sementes/química
16.
J Agric Food Chem ; 70(14): 4328-4341, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357828

RESUMO

Maca is a protein-enriched edible plant with immunomodulatory activity. However, the role of proteins in the immunomodulatory activity of maca is unclear. In this study, peptide products of maca proteins obtained through in vitro gastrointestinal digestion were isolated and purified, and the immunomodulatory activities of these peptides were assessed in macrophages (RAW 264.7 cells). The results show that the maca protein hydrolysate enhanced the phagocytic capacity and NO, TNF-α, and IL-6 secretion of RAW 264.7 cells. Forty-five peptides from known proteins of maca or the cruciferous family were identified by ultraperformance liquid chromatography-tandem mass spectrometry in the hydrolysate, and the peptide RNPFLP exhibited the strongest immunomodulatory activity. Antibody blocking, siRNA, pathway inhibitors, and western blot assays showed that RNPFLP-activated RAW 264.7 cells through the NF-κB and MAPK signaling pathways mediated by TLR2 and TLR4 receptors. An analysis of the structure-activity relationship showed that the N9-H60 active site in arginine plays an important role in the immunomodulatory activity of RNPFLP. This study provides a new understanding of the immunomodulatory activity of maca.


Assuntos
Lepidium , Animais , Lepidium/química , Camundongos , NF-kappa B/metabolismo , Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/farmacologia , Células RAW 264.7
17.
J Food Biochem ; 46(7): e14122, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332533

RESUMO

Inflammation is considered as a major risk for the pathogenesis of chronic diseases. Due to the adverse events caused by the long-term use of anti-inflammatory drugs, it is necessary to develop alternative and safe dietary supplements from natural products against inflammation. In this study, flavourzyme hydrolysate (for 0.5 hr) presented the strongest anti-inflammatory activity, which was further separated by ultrafiltration and column chromatography, followed by LC-MS/MS identification. Peptide APD, QA, KA, and WG were identified as anti-inflammatory peptides, which significantly reduced secretion of NO, IL-6, IL-1ß, and TNF-α in inflammatory macrophages. Among them, peptide QA showed the best overall anti-inflammatory effect, with the IC50 value against NO production of 849.3 µM. Most of the identified anti-inflammatory peptides were stably against digestion, and they had abundant frequencies in the α (I/II) chain of Salmo salar collagen. Our findings indicated the potential of S. salar skin hydrolysates as functional food to prevent inflammation. PRACTICAL APPLICATIONS: Long-term use of anti-inflammatory drugs causes adverse events like gastrorrhagia, and it is necessary to develop alternative and safe dietary supplements from natural products against inflammation. Salmo salar skin, as a major byproduct of total fish, has not been effectively utilized during processing. In this study, novel anti-inflammatory oligopeptides with high activities were separated and identified from S. salar skin gelatin hydrolysate, which were stably against digestion, and presented a high bioavailability and abundant frequencies in collagen. Our study highlighted the added value of aquatic by-products and suggested that S. salar skin collagen hydrolysate could be used as a promising dietary supplement against inflammatory diseases.


Assuntos
Produtos Biológicos , Salmo salar , Animais , Anti-Inflamatórios/farmacologia , Cromatografia Líquida , Colágeno/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Peptídeos/química , Peptídeos/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Espectrometria de Massas em Tandem
18.
Nutrients ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215448

RESUMO

Sarcopenia is prevalent as the aging population grows. Therefore, the need for supplements for the elderly is increasing. This study aimed to investigate the efficacy and mechanism of a Panax ginseng berry extract (GBE) and soluble whey protein hydrolysate (WPH) mixture on a sarcopenia-related muscular deterioration in aged mice. Ten-month-old male C57BL/6J mice were administered three different doses of the GBE + WPH mixture for 8 weeks; 700 mg/kg, 900 mg/kg, and 1100 mg/kg. Grip strength, serum inflammatory cytokines level, and mass of muscle tissues were estimated. The deteriorating function of aging muscle was investigated via protein or gene expression. Grip strength and mass of three muscle tissues were increased significantly in a dose-dependent manner, and increased anti-inflammatory cytokine alleviated systemic inflammatory state. The mixture resolved the imbalance of muscle protein turnover through activation of the PI3K/Akt pathway and increased gene expression of the muscle regeneration-related factors, while decreasing myostatin, which interferes with muscle protein synthesis and regeneration. Furthermore, we confirmed that increased mitochondria number in muscle with the improvement of mitochondrial biogenesis. These physiological changes were similar to the effects of exercise.


Assuntos
Panax , Sarcopenia , Animais , Frutas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Soro do Leite/metabolismo , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia
19.
Mar Drugs ; 19(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356821

RESUMO

Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.


Assuntos
Colágeno/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Salmão , Cicatrização/efeitos dos fármacos , Animais , Quimiocinas/metabolismo , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Hidrolisados de Proteína/administração & dosagem
20.
Nutrients ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206655

RESUMO

Fish protein consumption exerts beneficial metabolic effects on human health, also correlating with a decreased risk for cardiovascular disease. Fish waste contains high amount of proteins and utilization may offer the opportunity for generating compounds advantageous for human health. Especially, fish waste protein hydrolysates beneficially influence pathways involved in body composition, exerting anti-inflammatory and antioxidant activities, making their potential supplementation in human disorders of increased interest. This study assessed the effect of a 10% (w/w) anchovy waste protein hydrolysate (APH) diet for 12 weeks in reducing atherosclerosis in ApoE-/- mice, through histological and immunohistochemical methods. In addition, monitoring of plaque development was performed, using high-frequency ultrasound and magnetic resonance imaging. Overall, the APH diet attenuated atherosclerotic plaque development, producing a regression of arterial lesions over time (p < 0.05). Twelve weeks on an APH diet had an anti-obesity effect, improving lipid metabolism and reducing hepatic enzyme activity. A significant reduction in plaque size and lipid content was observed in the aortic sinus of APH-fed mice, compared to the control (p < 0.001), whereas no differences in the extracellular matrix and macrophage recruitment were observed. Supplementation of APH significantly attenuates atherosclerosis in ApoE-/- mice, exerting a lipid-lowering activity. The opportunity to use fish waste protein hydrolysates as a nutraceutical in atherosclerosis is worthy of future investigations, representing a low cost, sustainable, and nutritional strategy with minimal environmental impact.


Assuntos
Aterosclerose/terapia , Suplementos Nutricionais , Proteínas de Peixes/farmacologia , Hipolipemiantes/farmacologia , Hidrolisados de Proteína/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Modelos Animais de Doenças , Fezes/química , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/terapia , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA