RESUMO
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.
Assuntos
Osso e Ossos , Suplementos Nutricionais , Minerais , Alimentos Marinhos , Animais , Osso e Ossos/metabolismo , Hidrólise , Salmão/metabolismo , Disponibilidade Biológica , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hidrolisados de Proteína/química , PósRESUMO
BACKGROUND: Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS: Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION: Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.
Assuntos
Arachis , Cálcio , Peptídeos , Proteínas de Plantas , Hidrolisados de Proteína , Arachis/química , Peptídeos/química , Hidrolisados de Proteína/química , Humanos , Cálcio/química , Células CACO-2 , Proteínas de Plantas/química , Quelantes/química , Quelantes de Cálcio/química , Disponibilidade BiológicaRESUMO
Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.
Assuntos
Hidrolisados de Proteína , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peptídeos/farmacologia , Peptídeos/química , Músculos/metabolismo , Íons , Angiotensinas , Peptidil Dipeptidase A/metabolismoRESUMO
Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of âCOOH and âNH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.
Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , EtanolRESUMO
BACKGROUND: Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS: The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 µm (day 0) to 2.01 ± 0.04 µm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION: The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Assuntos
Emulsões , Óleos de Peixe , Helianthus , Olea , Oxirredução , Proteínas de Plantas , Hidrolisados de Proteína , Sementes , Emulsões/química , Helianthus/química , Olea/química , Hidrolisados de Proteína/química , Óleos de Peixe/química , Sementes/química , Proteínas de Plantas/química , Água/química , Antioxidantes/química , Hidrólise , Emulsificantes/químicaRESUMO
In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.
Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento MolecularRESUMO
The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.
Assuntos
Proteínas de Soja , Paladar , Hidrólise , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Papaína/química , Hidrolisados de Proteína/químicaRESUMO
An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.
Assuntos
Anti-Hipertensivos , Antioxidantes , Benzotiazóis , Polissacarídeos Bacterianos , Ácidos Sulfônicos , Anti-Hipertensivos/química , Antioxidantes/análise , Hidrólise , Inibidores da Enzima Conversora de Angiotensina/química , Pectinas/análise , Hidrolisados de Proteína/química , Peptídeos/química , Grão Comestível/química , Coloides/análiseRESUMO
This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (â¼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.
Assuntos
Bromelaínas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Bromelaínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Paladar , Papaína/metabolismo , Hidrólise , Ácido Glutâmico , Hidrolisados de Proteína/químicaRESUMO
Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.
Assuntos
Euphausiacea , Hidrolisados de Proteína , Animais , Humanos , Hidrolisados de Proteína/química , Euphausiacea/química , Cálcio , Células CACO-2 , Peptídeos/química , Regiões AntárticasRESUMO
This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, ß-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.
Assuntos
Antioxidantes , Bromelaínas , Antioxidantes/farmacologia , Antioxidantes/química , Glycine max/metabolismo , Papaína/química , Hidrolisados de Proteína/química , Proteínas de Soja , Aminoácidos , Subtilisinas/químicaRESUMO
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Assuntos
Bromelaínas , Peptídeos , Hidrólise , Bromelaínas/química , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/química , Hidrolisados de Proteína/químicaRESUMO
Iron is one of the trace mineral elements, and iron deficiency is a common phenomenon that negatively influences human health. Food-derived iron supplements were considered excellent candidates for improving this syndrome. In this work, oyster-protein hydrolysates (OPH) and ferrous chloride successfully formed the OPH-Fe complex (6 mg/mL, 40 °C, 30 min), where the main binding sites involved were the carboxyl and amino groups. The OPH-Fe complex showed no obvious changes in the secondary structure, while the iron changed the morphological appearance and also showed fluorescence quenching, an ultraviolet shift, and an increase in size distribution. The OPH-Fe complex showed better dynamic absorption of iron (64.11 µmol/L) than ferrous sulfate (46.90 µmol/L), and the medium dose had better protective effects against iron-deficiency anemia in vivo. Three representative peptides (DGKGKIPEE, FAGDDAPRA, and VLDSGDGVTH) that were absorbed intact were identified. This experiment provided a theoretical foundation for further study of the digestion and absorption of the OPH-Fe complex.
Assuntos
Anemia Ferropriva , Deficiências de Ferro , Ostreidae , Camundongos , Humanos , Animais , Ferro/metabolismo , Hidrolisados de Proteína/química , Compostos Ferrosos , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/prevenção & controle , Anemia Ferropriva/metabolismo , Ostreidae/metabolismoRESUMO
A novel calcium-binding peptide was purified from peanut protein hydrolysate using gel filtration chromatography and identified using HPLC-MS/MS. Its amino acid sequence was determined as Phe-Pro-Pro-Asp-Val-Ala (FPPDVA, named as FA6) with the calcium-binding capacity of 15.67 ± 0.39 mg/g. Then, the calcium chelating characteristics of FPPDVA were investigated using ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, particle size, and zeta potential. The results showed that FPPDVA interacted with calcium ions, the chelation of calcium ions induced FPPDVA to fold and form a denser structure, the calcium-binding sites may mainly involve oxygen atoms from the carboxyl residues of Asp and Ala, and Phe possessed contact energy and carbonyl residues of Val. Microstructure analysis showed that FPPDVA-calcium chelate exhibited a regularly ordered and tightly aggregated sheets or block structures. Additionally, FPPDVA-calcium chelate had good gastrointestinal digestive stability and thermal stability. The results of everted rat intestinal sac and Caco-2 cell monolayer experiments showed that FPPDVA-calcium chelate could promote calcium absorption and transport through the Cav1.3 and TRPV6 calcium channels. These data suggest that FPPDVA-calcium chelate possesses the potential to be developed and applied as calcium supplement.
Assuntos
Arachis , Cálcio , Humanos , Animais , Ratos , Cálcio/metabolismo , Arachis/metabolismo , Hidrolisados de Proteína/química , Células CACO-2 , Espectrometria de Massas em Tandem , Peptídeos/química , Cálcio da Dieta/metabolismo , Quelantes/química , ÍonsRESUMO
In this study, the composition of amino acids, nutritional characteristics, degree of hydrolysis (DH), antioxidant properties, and antibacterial activity of proteins and hydrolysates of bellflower (Campanula latifolia), Persian willow (Salix aegyptiaca), and bitter orange (Citrus aurantium L.) were investigated under the influence of different proteases (Alcalase: Al, trypsin: Tr, pancreatin: Pa, and pepsin: Pe). Evaluation of the structural features of the proteins showed amide regions (amide A, B, I-III) and secondary structures. Hydrophobic amino acids (â¼38%), antioxidants (â¼21%), and essential types (â¼46%) form a significant part of the structure of flower pollen. The digestibility and nutritional quality (PER) of the hydrolyzed samples (CP: 1.67; CA: 1.89, and PW: 1.93) were more than the original protein. Among proteins and peptides, the highest degree of hydrolysis (34.6%: Al-PWH), inhibition of free radicals DPPH (84.2%: Al-CPH), ABTS (95.2%: Pa-CPH), OH (86.7%: Tr-CAH), NO (57.8%: Al-CPH), reducing power (1.31: Pa-CPH), total antioxidant activity (1.46: Pa-CPH), and chelation of iron ions (80%: Al-CPH and Al-CAH) and copper (50.3%: Pa-CAH) were affected by protein type, enzyme type, and amino acid composition. Also, the highest inhibition of the growth of Escherichia coli (25 mm) and Bacillus cereus (24 mm) were related to CP and PW hydrolysates, respectively. The results of this research showed that hydrolyzed flower pollens can be used as a rich source of essential amino acids as well as natural antioxidants and antibacterial in food and dietary products. PRACTICAL APPLICATION: Enzymatic hydrolysis of Campanula latifolia, Persian willow, and Citrus aurantium pollen proteins was performed. The hydrolyzed ones had high nutritional quality and digestibility (essential amino acids and PER index). Antioxidant properties and chelation of metal ions of peptides were affected by the type of protein and enzyme. The hydrolysates showed inhibitory activity against the growth of Esherichia coli and Bacillus cereus.
Assuntos
Codonopsis , Salix , Antioxidantes/química , Salix/metabolismo , Codonopsis/metabolismo , Peptídeos/farmacologia , Proteínas , Hidrólise , Aminoácidos/metabolismo , Tripsina , Aminoácidos Essenciais , Amidas , Pólen , Hidrolisados de Proteína/químicaRESUMO
The functionality of the peptides obtained through enzymatic hydrolysis of spent brewer's yeast was investigated. Hydrolysis was carried out for 4-67 h with bromelain, neutrase and trypsin. The resulting hydrolysates were characterized in terms of physical-chemical, antioxidant and techno-functional properties. The solid residues and soluble protein contents increased with the hydrolysis time, the highest values being measured in samples hydrolyzed with neutrase. Regardless of the hydrolysis time, the maximum degree of hydrolysis was measured in the sample hydrolyzed with neutrase, while the lowest was in the sample hydrolyzed with trypsin. The protein hydrolysate obtained with neutrase exhibited the highest DPPH radical scavenging activity (116.9 ± 2.9 µM TE/g dw), followed by the sample hydrolyzed with trypsin (102.8 ± 2.7 µM TE/g dw). Upon ultrafiltration, the fraction of low molecular weight peptides (<3 kDa) released by bromelain presented the highest antioxidant activity (50.06 ± 0.39 µM TE/g dw). The enzymes influenced the foaming properties and the emulsions-forming ability of the hydrolysates. The trypsin ensured the obtaining of proteins hydrolysate with the highest foam overrun and stability. The emulsions based on hydrolysates obtained with neutrase exhibited the highest viscosity at a shear rate over 10 s-1. These results indicate that the investigated proteases are suitable for modulating the overall functionality of the yeast proteins.
Assuntos
Antioxidantes , Peptídeo Hidrolases , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peptídeo Hidrolases/química , Bromelaínas , Saccharomyces cerevisiae/metabolismo , Tripsina/metabolismo , Proteínas/metabolismo , Peptídeos/química , Hidrólise , Hidrolisados de Proteína/químicaRESUMO
BACKGROUND: The antioxidant properties of active peptides from silkworm pupae protein hydrolysate are of interest, and it serves as a novel source of calcium supplement. METHODS: Optimize the preparation parameters of silkworm pupae bioactive peptide-calcium chelate, and investigate the mechanism and bioavailability of silkworm pupae active peptide as a transport carrier to promote calcium ion absorption using simulated gastrointestinal digestion and Caco-2 monolayer cell model. RESULTS: The optimal process parameters for preparing peptide calcium chelate were the peptide calcium mass ratio of 3:1, pH of 6.7, a temperature of 35.6°C, and time of 32.8 min by Box-Behnken design, and the calciumchelating rate reached 84.67%. The DPPH radical scavenging activity of silkworm pupae protein hydrolysatecalcium chelate was 79.36 ± 4.31%, significantly higher than silkworm pupae protein hydrolysate (61.00 ± 9.56%). Fourier transform infrared spectroscopy shows that the COO-, N-H, C-H, and C-O groups participated in the formation of silkworm pupae protein hydrolysate-calcium chelate. The particle size of the silkworm pupae protein hydrolysate-calcium chelate was 970.75 ± 30.12 nm, which was significantly higher than that of silkworm pupae protein hydrolysate (253.14 ± 5.72 nm). The silkworm pupae protein hydrolysate-calcium chelate showed a calcium dissolution rate of 71.01 ± 1.91% in the simulated intestinal phase, significantly higher than that of CaCl2 (59.34 ± 1.24%). In the Caco-2 cell monolayers, the silkworm pupae protein hydrolysatecalcium chelate was more favorable for calcium transport. CONCLUSION: A novel silkworm pupa protein hydrolysate-calcium chelate with high antioxidant activity was successfully prepared to improve the bioavailability of calcium.
Assuntos
Bombyx , Cálcio , Humanos , Animais , Cálcio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Pupa/metabolismo , Disponibilidade Biológica , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Bombyx/metabolismo , Células CACO-2 , Peptídeos/químicaRESUMO
BACKGROUND: Tartary buckwheat protein peptides have been shown to be able to inhibit angiotensin-converting enzyme (ACE), but the exact protein type has been less studied for ACE activity inhibition, and only a few types of ACE inhibitory peptides have been reported. In this study, we purified and identified ACE inhibitory peptides from albumin hydrolysate (AH). RESULTS: Albumin, globulin, prolamin and glutelin were extracted from Tartary buckwheat, and their ACE active peptides were obtained by a pepsin-trypsin sequential hydrolysis process. All four hydrolysates exhibited ACE inhibitory activity, and AH displayed the strongest ACE inhibition activity and the highest peptide yield (82.28%). At 0.2 mg mL-1 , the inhibition rate of AH was 79.89%, followed by globulin hydrolysate at 71.84%, while prolamin hydrolysate and glutelin hydrolysate showed lower inhibition rates. The peptides with the highest inhibition rate were then isolated from AH using gel filtration chromatography and reversed-phase high-performance liquid chromatography, and identified using nanoscale high-performance liquid chromatography-tandem mass spectrometry. After isolation and purification, 42 ACE inhibitory peptides were identified in the fraction with the highest inhibition rate, 14 of which were completely novel discoveries in this study. These 14 peptides showed potent ACE inhibitory effects through computer analysis. CONCLUSION: Tartary buckwheat albumin can be used as a good source of ACE inhibitory peptides and can be further developed and utilized as edible supplements or drugs. © 2023 Society of Chemical Industry.
Assuntos
Fagopyrum , Globulinas , Inibidores da Enzima Conversora de Angiotensina/química , Fagopyrum/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Albuminas , Peptidil Dipeptidase A/química , Hidrólise , Glutens , AngiotensinasRESUMO
Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.
Assuntos
Arachis , Peptídeos , Animais , Arachis/química , Hidrólise , Hidrolisados de Proteína/química , AntioxidantesRESUMO
Turtle shell as a food residue of Pelodiscus sinensis (a type of edible aquatic animal) is widely used in Traditional Chinese Medicine for hepatic fibrosis therapy. Previous studies have demonstrated that the peptides (<6 kDa) derived from turtle shells are considered effective components. The protein of turtle shells has important potential as a source of bioactive peptides which may play a role as ingredients in functional foods. In the present study, the protein of turtle shell was hydrolyzed using a two-enzyme combination. It was found that the hydrolysates obtained by a combination of pepsin and trypsin showed the highest anti-liver fibrosis activity relative to other combinations in a cell viability assay. The hydrolysates were separated and purified by ultra-filtration (<6 kDa), gel filtration chromatography (GFC) and high-performance liquid chromatography (HPLC). Subsequently, the sequences of purified peptides were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Molecular docking was used to analyze the interaction of these peptides with the transforming growth factor-ß1 (TGF-ß1) receptor. Two (GPPGVPGPGPL, TSLPVPAPV) of these novel peptides displayed lower binding energies to the TGF-ß1 receptor (-8.18 kcal mol-1, -8 kcal mol-1). Finally, the above two peptides were synthesized chemically and their in vitro anti-liver fibrosis activity was verified by MTT assay. Among them, GPPGVPGPGPL showed a better in vitro anti-liver fibrosis activity (IC50: 80.13 µM). We established a method to obtain anti-liver fibrosis peptides from turtle shells by using bioactivity-guided isolation with molecular docking. Turtle shell protein is an excellent source of anti-liver fibrosis peptides which can offer therapeutic and commercial benefits as an ingredient in functional foods.