Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.665
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621869

RESUMO

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Medicina Tradicional Chinesa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Biofilmes , Infecções Bacterianas/tratamento farmacológico
2.
ACS Appl Mater Interfaces ; 16(13): 16011-16028, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529951

RESUMO

Superbug infections and transmission have become major challenges in the contemporary medical field. The development of novel antibacterial strategies to efficiently treat bacterial infections and conquer the problem of antimicrobial resistance (AMR) is extremely important. In this paper, a bimetallic CuCo-doped nitrogen-carbon nanozyme-functionalized hydrogel (CuCo/NC-HG) has been successfully constructed. It exhibits photoresponsive-enhanced enzymatic effects under near-infrared (NIR) irradiation (808 nm) with strong peroxidase (POD)-like and oxidase (OXD)-like activities. Upon NIR irradiation, CuCo/NC-HG possesses photodynamic activity for producing singlet oxygen(1O2), and it also has a high photothermal conversion effect, which not only facilitates the elimination of bacteria but also improves the efficiency of reactive oxygen species (ROS) production and accelerates the consumption of GSH. CuCo/NC-HG shows a lower hemolytic rate and better cytocompatibility than CuCo/NC and possesses a positive charge and macroporous skeleton for restricting negatively charged bacteria in the range of ROS destruction, strengthening the antibacterial efficiency. Comparatively, CuCo/NC and CuCo/NC-HG have stronger bactericidal ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AmprE. coli) through destroying the cell membranes with a negligible occurrence of AMR. More importantly, CuCo/NC-HG plus NIR irradiation can exhibit satisfactory bactericidal performance in the absence of H2O2, avoiding the toxicity from high-concentration H2O2. In vivo evaluation has been conducted using a mouse wound infection model and histological analyses, and the results show that CuCo/NC-HG upon NIR irradiation can efficiently suppress bacterial infections and promote wound healing, without causing inflammation and tissue adhesions.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Animais , Hidrogéis/farmacologia , Escherichia coli , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Fototerapia , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Carbono , Modelos Animais de Doenças , Nitrogênio
3.
Int J Biol Macromol ; 264(Pt 1): 130477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428784

RESUMO

Multidrug-resistant (MDR) bacterial infections have become a significant threat to global healthcare systems. Here, we developed a highly efficient antimicrobial hydrogel using environmentally friendly garlic carbon dots, pectin, and acrylic acid. The hydrogel had a porous three-dimensional network structure, which endowed it with good mechanical properties and compression recovery performance. The hydrogel could adhere closely to skin tissues and had an equilibrium swelling ratio of 6.21, indicating its potential as a wound dressing. In particular, the bactericidal efficacy following 24-h contact against two MDR bacteria could exceed 99.99 %. When the hydrogel was applied to epidermal wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) on mice, a remarkable healing rate of 93.29 % was observed after 10 days. This was better than the effectiveness of the traditionally used antibiotic kanamycin, which resulted in a healing rate of 70.36 %. In vitro cytotoxicity testing and hemolysis assay demonstrated a high biocompatibility. This was further proved by the in vivo assay where no toxic side effects were observed on the heart, liver, spleen, lung, or kidney of mice. This eco-friendly and easy-to-prepare food-inspired hydrogel provides an idea for the rational use of food and food by-products as a wound dressing to control MDR bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Carbono/química , Hidrogéis/farmacologia , Hidrogéis/química , Pectinas/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico
5.
Biomater Sci ; 12(6): 1558-1572, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38305728

RESUMO

In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Peróxido de Hidrogênio , Fototerapia , Nanopartículas/química , Infecções Bacterianas/tratamento farmacológico , Escherichia coli , Antibacterianos/química
6.
Acta Biomater ; 178: 287-295, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395101

RESUMO

Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso­position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso­position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.


Assuntos
Infecções Bacterianas , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fototerapia , Corantes , Infecções Bacterianas/tratamento farmacológico , Piridinas/farmacologia
7.
Nanomedicine (Lond) ; 18(30): 2185-2204, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116732

RESUMO

Copper sulfide nanoparticles (CuS NPs) have attracted growing interest in biomedical research due to their remarkable properties, such as their high photothermal and thermodynamic capabilities, which are ideal for anticancer and antibacterial applications. This comprehensive review focuses on the current state of antitumor and antibacterial applications of CuS NPs. The initial section provides an overview of the various approaches to synthesizing CuS NPs, highlighting the size, shape and composition of CuS NPs fabricated using different methods. In this review, the mechanisms underlying the antitumor and antibacterial activities of CuS NPs in medical applications are discussed and the clinical challenges associated with the use of CuS NPs are also addressed.


Assuntos
Infecções Bacterianas , Nanopartículas , Neoplasias , Humanos , Cobre/uso terapêutico , Fototerapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Sulfetos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico
8.
Int J Nanomedicine ; 18: 6563-6584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026531

RESUMO

Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Fósforo/química , Nanoestruturas/química , Infecções Bacterianas/tratamento farmacológico , Bactérias , Antibacterianos/química
9.
J Mater Chem B ; 11(30): 7069-7093, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37401343

RESUMO

Bacterial infections pose a significant threat to human health and a heavy burden on the global healthcare system. Antibiotics are the primary treatment, but they can lead to bacterial resistance and adverse side effects. Two-dimensional (2D) nanomaterials such as graphene, MoS2, and MXene have emerged as novel antibacterial agents due to their potential to circumvent bacterial resistance. Among the 2D nanomaterials, black phosphorus nanosheets (BPNs) have attracted great research interest due to their excellent biocompatibility. BPNs possess unique properties, such as a high specific surface area, tunable bandgap, and easy surface functionalization, enabling them to combat bacteria through physical disruption of bacterial membranes, photothermal and photodynamic therapies. However, the low preparation efficiency and inevitable oxidative degradation of BPNs have limited their wide application. This review provides a comprehensive overview of recent advances in antibacterial research on BPNs, encompassing their preparation methods, structural and physicochemical properties, antibacterial mechanisms, and potential applications. By addressing the challenges and prospects of using BPNs as an alternative to antibiotics, this review provides valuable insights and guidance for utilizing BPNs in shaping the future of antibacterial therapy.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Fósforo/química , Nanoestruturas/química , Bactérias , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/química
10.
Eur J Pharm Sci ; 188: 106515, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37402428

RESUMO

Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Humanos , Estudos Prospectivos , Farmacorresistência Bacteriana , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana
11.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445714

RESUMO

Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.


Assuntos
Infecções Bacterianas , Infecções por Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Humanos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico
12.
J Korean Med Sci ; 38(25): e189, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365725

RESUMO

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is a viral infection, antibiotics are often prescribed due to concerns about accompanying bacterial infection. Therefore, we aimed to analyze the number of patients with COVID-19 who received antibiotic prescriptions, as well as factors that influenced antibiotics prescription, using the National Health Insurance System database. METHODS: We retrospectively reviewed claims data for adults aged ≥ 19 years hospitalized for COVID-19 from December 1, 2019 to December 31, 2020. According to the National Institutes of Health guidelines for severity classification, we calculated the proportion of patients who received antibiotics and the number of days of therapy per 1,000 patient-days. Factors contributing to antibiotic use were determined using linear regression analysis. In addition, antibiotic prescription data for patients with influenza hospitalized from 2018 to 2021 were compared with those for patients with COVID-19, using an integrated database from Korea Disease Control and Prevention Agency-COVID19-National Health Insurance Service cohort (K-COV-N cohort), which was partially adjusted and obtained from October 2020 to December 2021. RESULTS: Of the 55,228 patients, 46.6% were males, 55.9% were aged ≥ 50 years, and most patients (88.7%) had no underlying diseases. The majority (84.3%; n = 46,576) were classified as having mild-to-moderate illness, with 11.2% (n = 6,168) and 4.5% (n = 2,484) having severe and critical illness, respectively. Antibiotics were prescribed to 27.3% (n = 15,081) of the total study population, and to 73.8%, 87.6%, and 17.9% of patients with severe, critical, and mild-to-moderate illness, respectively. Fluoroquinolones were the most commonly prescribed antibiotics (15.1%; n = 8,348), followed by third-generation cephalosporins (10.4%; n = 5,729) and beta-lactam/beta-lactamase inhibitors (6.9%; n = 3,822). Older age, COVID-19 severity, and underlying medical conditions contributed significantly to antibiotic prescription requirement. The antibiotic use rate was higher in the influenza group (57.1%) than in the total COVID-19 patient group (21.2%), and higher in severe-to-critical COVID-19 cases (66.6%) than in influenza cases. CONCLUSION: Although most patients with COVID-19 had mild to moderate illness, more than a quarter were prescribed antibiotics. Judicious use of antibiotics is necessary for patients with COVID-19, considering the severity of disease and risk of bacterial co-infection.


Assuntos
Infecções Bacterianas , COVID-19 , Influenza Humana , Adulto , Masculino , Humanos , Feminino , Antibacterianos/uso terapêutico , Influenza Humana/tratamento farmacológico , Estudos Retrospectivos , Infecções Bacterianas/tratamento farmacológico , Prescrições de Medicamentos , República da Coreia/epidemiologia , Programas Nacionais de Saúde
13.
ACS Nano ; 17(11): 10019-10032, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37234036

RESUMO

Inhibition of quorum sensing (QS) is considered as an effective strategy in combatting biofilm-associated bacterial infections. However, the application of quorum sensing inhibitors (QSI) is strongly restricted by poor water-solubility and low bioavailability. We herein fabricate pH-sensitive curcumin (Cur) loaded clustered nanoparticles with active targeting ability (denoted as anti-CD54@Cur-DA NPs) to inhibit QS for enhanced antibiotic therapy. Cur-DA NPs are first prepared through electrostatic interaction between Cur loaded amino-ended poly(amidoamine) dendrimer (PAMAM) and 2,3-dimethyl maleic anhydride (DA) modified biotin-poly(ethylene glycol)-polylysine (biotin-PEG-PLys). Anti-CD54@Cur-DA NPs are then obtained by the modification of Cur-DA NPs with anti-CD54. Cur loaded PAMAM can be released from Cur-DA NPs in acidic pH, leading to simultaneous charge reversal and size decrease, which is beneficial for biofilm penetration. Cur-DA NPs are hence much better in inhibiting QS than free Cur due to enhanced biofilm penetration. Compared to free Cur, Cur-DA NPs exhibit stronger capability in inhibiting the development of biofilm architecture and maturation, thus downregulating efflux pump-related genes and improving bactericidal performance of multiple antibiotics, including Penicillin G, ciprofloxacin, and tobramycin. Moreover, since anti-CD54 can selectively bind to inflamed endothelial cells, anti-CD54@Cur-DA NPs can be targeted accumulated in bacteria-infected tissues. The sequential treatment using anti-CD54@Cur-DA NPs and free antibiotics can effectively reduce bacterial burden and alleviate inflammation in a chronic lung infection model in vivo. This research provides an effective way to improve the therapeutic performance of QSI to enhance the anti-biofilm effects of antibiotics, which radiate a vitality of conventional antibiotics in treating biofilm-associated bacterial infections.


Assuntos
Infecções Bacterianas , Curcumina , Nanopartículas , Humanos , Percepção de Quorum , Células Endoteliais , Biotina , Nanopartículas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Concentração de Íons de Hidrogênio
14.
ACS Appl Bio Mater ; 6(6): 2384-2393, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37191675

RESUMO

Infections caused by multidrug-resistant bacteria continue to pose a serious threat to human health, and therefore it is important to explore the availability of antimicrobial drugs and modalities. Herein, jellyfish-type irregular mesoporous iron oxide nanoreactors containing ciprofloxacin, Janus Fe3O4@mSiO2@Cip nanoparticles (JFmS@Cip NPs), were developed for pH-responsive synergistic antimicrobial therapy in a microacidic environment. Compared with the use of symmetric nanocarriers, the asymmetric decoration on both sides of the particles allows different components to act on bacteria, Fe3O4 NPs have good magnetic and peroxidase-like catalytic activity, and the antibiotic ciprofloxacin can kill bacteria efficiently. Notably, due to the synergistic effect between different components of Janus particles, in vitro antibacterial experiments showed that JFmS@Cip NPs can kill bacteria efficiently at low concentrations, reaching an antibacterial rate of 99.6%. JFmS@Cip NPs combine multiple antibacterial properties that can be used to improve the therapeutic efficacy of current nanomedicines against drug-resistant bacteria.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Bactérias , Nanotecnologia
15.
Hum Vaccin Immunother ; 19(1): 2175519, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36935353

RESUMO

The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Animais , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/tratamento farmacológico , Bacteriófagos/fisiologia , Farmacorresistência Bacteriana Múltipla , Modelos Animais , Antibacterianos/uso terapêutico
16.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992511

RESUMO

Recently, the treatment of infected wounds has become a global problem due to increased antibiotic resistance in bacteria. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is often present in chronic skin infections, and it has become a threat to public health as it is increasingly multidrug resistant. Due to this, new measures to enable treatment of infections are necessary. Treatment of bacterial infections with bacteriophages, known as phage therapy, has been in use for a century, and has potential with its antimicrobial effect. The main purpose of this study was to create a phage-containing wound dressing with the ability to prevent bacterial infection and rapid wound healing without side effects. Several phages against P. aeruginosa were isolated from wastewater, and two polyvalent phages were used to prepare a phage cocktail. The phage cocktail was loaded in a hydrogel composed of polymers of sodium alginate (SA) and carboxymethyl cellulose (CMC). To compare the antimicrobial effects, hydrogels containing phages, ciprofloxacin, or phages plus ciprofloxacin were produced, and hydrogels without either. The antimicrobial effect of these hydrogels was investigated in vitro and in vivo using an experimental mouse wound infection model. The wound-healing process in different mouse groups showed that phage-containing hydrogels and antibiotic-containing hydrogels have almost the same antimicrobial effect. However, in terms of wound healing and pathological process, the phage-containing hydrogels performed better than the antibiotic alone. The best performance was achieved with the phage-antibiotic hydrogel, indicating a synergistic effect between the phage cocktail and the antibiotic. In conclusion, phage-containing hydrogels eliminate efficiently P. aeruginosa in wounds and may be a proper option for treating infectious wounds.


Assuntos
Infecções Bacterianas , Bacteriófagos , Infecção dos Ferimentos , Camundongos , Animais , Pseudomonas aeruginosa , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Infecções Bacterianas/tratamento farmacológico , Modelos Animais de Doenças , Infecção dos Ferimentos/tratamento farmacológico
17.
Acta Biomater ; 162: 20-31, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931421

RESUMO

Antibacterial electrotherapy is currently activated by external electric field or self-powered generators, but usually needs complicated power management circuits. Herein, near-infrared illumination (NIR) of pyroelectric nanoparticles (NPs) produces a built-in electric field to address the effectiveness and safety concerns in the antibacterial treatment. Janus tBT@PDA NPs were obtained by capping polydopamine (PDA) on tetragonal BaTiO3 (tBT) NPs through defining the polymerization time, followed by ciprofloxacin (CIP) loading on the PDA caps to fabricate Janus tBT@PDA-Cip NPs. NIR illumination of PDA caps creates temperature variations on tBT NPs to generate photothermal and pyroelectric effects. Finite element simulation reveals a pyroelectric potential of over 1 V and sufficient reactive oxygen species (ROS) are produced to exhibit pyroelectric dynamic therapy (PEDT). The elevated temperature on one side of the Janus NPs produces thermophoretic force to drive NP motion, which enhances interactions with bacteria and overcomes limitations in the short action distance and lifespan of ROS. The pyroelectric field accelerates CIP release through weakening the π-π stacking and electrostatic interaction with PDA and also interrupts membrane potentials of bacteria to enhance CIP invasion into bacteria. The synergistic antibacterial effect of pyroelectric tBT@PDA-Cip NPs causes the fully recovery of S. aureus-infected skin wounds and regeneration of intact epidermis, blood vessels and hair follicles, while no obvious pathological change or inflammatory lesion is detected in the major organs. Thus, the pyroelectric Janus nanomotors demonstrate synergistic PEDT/photothermal/antibiotic effects to enhance antibacterial efficacy while avoiding the necessity of excessive heat, ROS and antibiotic doses. STATEMENT OF SIGNIFICANCE: Antibacterial treatment is challenged by antibiotics-derived side effects and the evolution of resistant strains. Phototherapy is commonly associated with excessive heat and oxidative stress, and their combinations with other agents are especially encouraged to strengthen antibacterial efficacy while alleviating the associated side effects. Electric field is another activator to generate antibacterial abilities, but usually requires complicated power management and bulk electrodes, making it inconvenient in a biological setup. To address these challenges, we propose a strategy to generate microelectric field on nanoparticles themselves and achieve synergistic electrodynamic-photothermal-antibiotic therapies. The pyroelectric effect weakens interactions between nanoparticles and antibiotics to accelerate drug release, and the built-in pyroelectric field increases membrane fluidity to enhance bacterial uptake of antibiotics.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Fototerapia , Infecções Bacterianas/tratamento farmacológico
18.
Am J Gastroenterol ; 118(4): 654-663, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594820

RESUMO

INTRODUCTION: For the treatment of spontaneous bacterial peritonitis (SBP), cefotaxime, ceftriaxone, and ciprofloxacin were used as first-line agents. However, considering the increasing rate of antibiotic resistance, it is unclear which of these drugs can be initially recommended. This study aimed to compare the current efficacy of the 3 antibiotics, namely cefotaxime, ceftriaxone, and ciprofloxacin, for the treatment of SBP in patients with cirrhosis with ascites, when guided by therapeutic responses. METHODS: This study was a multicenter, prospective, randomized controlled trial. The inclusion criteria were 16- to 75-year-old patients with liver cirrhosis with ascites, having polymorphonuclear cell count of >250/mm 3 . We performed a follow-up paracentesis at 48 hours to decide continuing or changing the assigned antibiotics and then assessed the resolution rates at 120 and 168 hours of treatment. RESULTS: A total of 261 patients with cirrhosis who developed SBP were enrolled. Most of the patients were diagnosed as those with SBP within 48 hours of admission. The resolution rates at 120 hours, which is the primary endpoint, were 67.8%, 77.0%, and 73.6% in the cefotaxime, ceftriaxone, and ciprofloxacin groups, respectively ( P = 0.388), by intension-to-treat analysis. The 1-month mortality was similar among the groups ( P = 0.770). The model for end-stage liver disease score and the SBP resolution were significant factors for survival. CONCLUSION: The efficacy of empirical antibiotics, such as cefotaxime, ceftriaxone, and ciprofloxacin, against SBP was not significantly different. In addition, these antibiotics administered based on response-guided therapy were still efficacious as initial treatment for SBP, especially in those with community-acquired infections.


Assuntos
Infecções Bacterianas , Doença Hepática Terminal , Peritonite , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Cefotaxima/uso terapêutico , Ceftriaxona/uso terapêutico , Ciprofloxacina/uso terapêutico , Ascite/tratamento farmacológico , Estudos Prospectivos , Doença Hepática Terminal/tratamento farmacológico , Índice de Gravidade de Doença , Antibacterianos/uso terapêutico , Peritonite/tratamento farmacológico , Peritonite/etiologia , Peritonite/diagnóstico , Cirrose Hepática/terapia , Infecções Bacterianas/complicações , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
19.
Curr Pharm Des ; 29(5): 312-322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717996

RESUMO

Antibiotics are commonly used to treat bacterial infections. For many years, antibiotics have been used at sub-therapeutic doses to promote animal growth and misused as prophylactics and metaphylactic on farms. The widespread and improper use of antibiotics has resulted in a serious problem, defined as antibiotic resistance by the World Health Organisation, which is a major public health threat in the 21st century. Bacteria have evolved sophisticated mechanistic strategies to avoid being killed by antibiotics. These strategies can be classified as intrinsic resistance (referring to the inherent structural or functional characteristics of a bacterial species) or acquired resistance (referring to mutations in chromosomal genes or the acquisition of external genetic determinants of resistance). In farm animals, the use of antibiotics warrants serious consideration, as their residues leach into the environment through effluents and come into contact with humans through food. Several factors have contributed to the emergence of antibiotic-resistant bacteria. This review provides an update on antibiotic resistance mechanisms, while focusing on the effects of this threat on veterinary medicine, and highlighting causal factors in clinical practice. Finally, it makes an excursus on alternative therapies, such as the use of bacteriophages, bacteriocins, antimicrobial photodynamic therapy, phytochemicals, and ozone therapy, which should be used to combat antibiotic-resistant infections. Some of these therapies, such as ozone therapy, are aimed at preventing the persistence of antibiotics in animal tissues and their contact with the final consumer of food of animal origin.


Assuntos
Infecções Bacterianas , Ozônio , Humanos , Animais , Antibacterianos , Farmacorresistência Bacteriana , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , Infecções Bacterianas/prevenção & controle , Ozônio/farmacologia , Ozônio/uso terapêutico
20.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479844

RESUMO

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Poloxaleno/farmacologia , Infecções Bacterianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA