Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 384(6694): 438-446, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662831

RESUMO

Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)-dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)-expressing neurons. A nonphosphorylatable MFFS131G knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFFS131G knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus-liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.


Assuntos
Alimentos , Gluconeogênese , Glucose , Fígado , Proteínas de Membrana , Mitocôndrias Hepáticas , Dinâmica Mitocondrial , Proteínas Mitocondriais , Percepção , Animais , Masculino , Camundongos , Técnicas de Introdução de Genes , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos
2.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353515

RESUMO

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Assuntos
Mitocôndrias Hepáticas , Fósforo , Animais , Mitocôndrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Brometos/metabolismo , Metilação , Bicamadas Lipídicas/metabolismo , Mamíferos
3.
Bioelectrochemistry ; 150: 108369, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36638678

RESUMO

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.


Assuntos
Fósforo , Prótons , Ésteres/análise , Ésteres/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias , Bicamadas Lipídicas/química
4.
Photochem Photobiol Sci ; 22(2): 279-302, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36152272

RESUMO

Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 µM. Additionally, TBO (40 µM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitocôndrias Hepáticas , Ratos , Animais , Mitocôndrias Hepáticas/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Metabolismo Energético , Fármacos Fotossensibilizantes/farmacologia , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
5.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555847

RESUMO

Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.


Assuntos
Cálcio , Prótons , Cálcio/metabolismo , Magnésio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Bicamadas Lipídicas/química , Cátions/metabolismo , Cátions Bivalentes/metabolismo
6.
Chem Biol Interact ; 364: 110054, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872042

RESUMO

The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.


Assuntos
Gluconeogênese , Floretina , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Glucose/metabolismo , Fígado , Mitocôndrias Hepáticas/metabolismo , Floretina/farmacologia , Ratos , Ratos Wistar
7.
Sci Rep ; 12(1): 350, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013384

RESUMO

Inosine 5'-monophosphate (5'-IMP) is an essential nucleotide for de novo nucleotide biosynthesis and metabolism of energy, proteins, and antioxidants. Nucleotides are conditionally essential, as they cannot be produced sufficiently rapidly to meet the needs of the body in situations of oxidative stress or rapid muscle growth. A deficient intake of nucleotides can result in decreased ATP and GTP synthesis and impaired metabolism. We demonstrated that supplementation of finishing pig diets with 5'-IMP reduces the relative weight of the liver, and increases oxygen consumption during mitochondrial respiration without changing the ADP/O ratio, indicating an increase in the respiratory efficiency of liver mitochondria. We also observed a reduction in liver lipid peroxidation and an increase in muscle creatine. Moreover, 5'IMP supplementation increases slaughter weight, lean meat yield, sarcomere length, and backfat thickness in finishing barrows, demonstrating influence on protein metabolism. We suggest that 5'-IMP supplementation increase the mitochondrial respiratory capacity when the liver metabolic activity is stimulated, enhances antioxidant defense, and promotes muscle growth in finishing barrows.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/metabolismo , Suplementos Nutricionais , Metabolismo Energético , Inosina Monofosfato/administração & dosagem , Fígado/metabolismo , Músculo Esquelético/metabolismo , Sus scrofa/metabolismo , Ração Animal , Animais , Peroxidação de Lipídeos , Fígado/crescimento & desenvolvimento , Mitocôndrias Hepáticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Consumo de Oxigênio , Sus scrofa/crescimento & desenvolvimento , Aumento de Peso
8.
J Nutr Biochem ; 100: 108869, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34563665

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the major causes of hepatocellular carcinoma (HCC). Although the intracellular cholesterol accumulation has been demonstrated to regulate the gene expression responsible for steatohepatitis, the role played by cholesterol in the development of NAFLD-associated HCC has not been fully elucidated. In this study, using microarray analysis, we investigated the molecular mechanisms governing cholesterol-mediated progression of NAFLD. To ensure hepatic cholesterol accumulation, either a high-fat and high-cholesterol (HFHC) diet or a high-fat and high-cholesterol with cholic acid (HFHCCA) diet was fed to diethylnitrosamine (DEN)-injected C57BL/6J mice for 10 weeks. While an HFHC diet increased hepatic triglyceride levels, an HFHCCA diet induced hepatic cholesterol accumulation by reducing bile acid biosynthesis in DEN-injected mice. Livers from both HFHC and HFHCCA groups exhibited increases in steatosis and necrosis; however, histological features of HCC were not observed in any of the experimental groups. Hepatic gene expression profile of the HFHCCA group was different from those of other groups. Functional analysis showed that cholic acid supplementation upregulated differentially expressed genes (DEGs) associated with inflammation, proliferation, apoptosis, chemical drug response, and cancer signaling pathway. Downregulated DEGs were associated with steroid metabolism, mitochondrial function, and oxidative phosphorylation pathway. Furthermore, hepatic cholesterol accumulation lowered the expression of DEGs associated with energy and macronutrient metabolism, especially amino acid metabolism. In this study, the results of a global gene expression profile demonstrated that feeding the HFHCCA diet to DEN-injected mice accelerated the carcinogenic progression of NAFLD, implicating the critical role played by hepatic accumulation of cholesterol.


Assuntos
Carcinogênese , Colesterol na Dieta , Colesterol/metabolismo , Ácido Cólico/administração & dosagem , Dieta Hiperlipídica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Aminoácidos/metabolismo , Animais , Carcinoma Hepatocelular/fisiopatologia , Suplementos Nutricionais , Dietilnitrosamina/farmacologia , Progressão da Doença , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/patologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transcriptoma
9.
J Biol Chem ; 297(6): 101388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762911

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Assuntos
Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Citocinas/deficiência , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , NAD/genética , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação Oxidativa , Fenótipo
10.
Genes (Basel) ; 12(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34573421

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading liver chronic disease featuring hepatic steatosis. Mitochondrial ß-oxidation participates in the derangement of lipid metabolism at the basis of NAFLD, and mitochondrial oxidative stress contributes to the onset of the disease. We evaluated the presence and effects of mitochondrial oxidative stress in the liver from rats fed a high-fat plus fructose (HF-F) diet inducing NAFLD. Supplementation with dehydroepiandrosterone (DHEA), a multitarget antioxidant, was tested for efficacy in delaying NAFLD. A marked mitochondrial oxidative stress was originated by all diets, as demonstrated by the decrease in Superoxide Dismutase 2 (SOD2) and Peroxiredoxin III (PrxIII) amounts. All diets induced a decrease in mitochondrial DNA content and an increase in its oxidative damage. The diets negatively affected mitochondrial biogenesis as shown by decreased peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), and the COX-IV subunit from the cytochrome c oxidase complex. The reduced amounts of Beclin-1 and lipidated LC3 II form of the microtubule-associated protein 1 light chain 3 (LC3) unveiled the diet-related autophagy's decrease. The DHEA supplementation did not prevent the diet-induced changes. These results demonstrate the relevance of mitochondrial oxidative stress and the sequential dysfunction of the organelles in an obesogenic diet animal model of NAFLD.


Assuntos
Desidroepiandrosterona/farmacologia , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , DNA Mitocondrial , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo , Peroxirredoxina III/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
11.
Life Sci ; 284: 119910, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453939

RESUMO

AIMS: Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS: Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS: Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE: Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.


Assuntos
Artrite Experimental/patologia , Caseínas/química , Microesferas , Estresse Oxidativo , Pectinas/química , Quercetina/farmacologia , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Artrite Experimental/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Varredura Diferencial de Calorimetria , Respiração Celular/efeitos dos fármacos , Edema/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073582

RESUMO

Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Hepatócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitofagia/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Hepatócitos/patologia , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Oxirredução/efeitos dos fármacos
13.
Drug Metab Dispos ; 49(8): 601-609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011531

RESUMO

Ozanimod, recently approved for treating relapsing multiple sclerosis, produced a disproportionate, active, MAO B-catalyzed metabolite (CC112273) that showed remarkable interspecies differences and led to challenges in safety testing. This study explored the kinetics of CC112273 formation from its precursor RP101075. Incubations with human liver mitochondrial fractions revealed K Mapp, V max, and intrinsic clearance (Clint) for CC112273 formation to be 4.8 µM, 50.3 pmol/min/mg protein, and 12 µl/min/mg, respectively, whereas Michaelis-Menten constant (K M) with human recombinant MAO B was 1.1 µM. Studies with liver mitochondrial fractions from preclinical species led to K Mapp, V max, and Clint estimates of 3.0, 35, and 33 µM, 80.6, 114, 37.3 pmol/min/mg, and 27.2, 3.25, and 1.14 µl/min/mg in monkey, rat, and mouse, respectively, and revealed marked differences between rodents and primates, primarily attributable to differences in the K M Comparison of Clint estimates revealed monkey to be ∼2-fold more efficient and the mouse and rat to be 11- and 4-fold less efficient than humans in CC112273 formation. The influence of stereochemistry on MAO B-mediated oxidation was also investigated using the R-isomer of RP101075 (RP101074). This showed marked selectivity toward catalysis of the S-isomer (RP101075) only. Docking into MAO B crystal structure suggested that although both the isomers occupied its active site, only the orientation of RP101075 presented the C-H on the α-carbon that was ideal for the C-H bond cleavage, which is a requisite for oxidative deamination. These studies explain the basis for the observed interspecies differences in the metabolism of ozanimod as well as the substrate stereospecificity for formation of CC112273. SIGNIFICANCE STATEMENT: This study evaluates the enzymology and the species differences of the major circulating metabolite of ozanimod, CC112273. Additionally, the study also explores the influence of stereochemistry on MAO B-catalyzed reactions. The study is of significance to the DMD readers given that this oxidation is catalyzed by a non-cytochrome P450 enzyme, and that marked species difference and notable stereospecificity was observed in MAO B-catalyzed biotransformation when the indaneamine enantiomers were used as substrates.


Assuntos
Indanos/farmacocinética , Monoaminoxidase/metabolismo , Oxidiazóis/farmacocinética , Animais , Biotransformação , Desaminação , Avaliação Pré-Clínica de Medicamentos , Haplorrinos , Humanos , Indanos/sangue , Taxa de Depuração Metabólica , Camundongos , Mitocôndrias Hepáticas/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Oxidiazóis/sangue , Oxirredução , Ratos , Especificidade da Espécie , Moduladores do Receptor de Esfingosina 1 Fosfato/sangue , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacocinética , Estereoisomerismo
14.
J Pharm Pharmacol ; 73(6): 796-807, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33734400

RESUMO

OBJECTIVES: Glucolipid metabolic disorders (GLMD) promote a series of major chronic diseases. Polygoni Multilori Radix Preparata (PMRP) has been widely acknowledged in the prevention and treatment of GLMD. We previously reported that water extract (WE) of PMRP and its major bioactive constituents such as polysaccharides (POL) and 2,3,5,4´-tetrahydroxy-stilbene-2-O-ß-D-glucoside (TSG) could alleviate GLMD. The mitochondrial dysfunction is an important mechanism of GLMD, but the underlying mechanisms behind the regulation of mitochondria to alleviate GLMD by WE, POL from PMRP and TSG are still unknown. METHODS: In this study, we elucidated the effects of WE, POL, and TSG towards regulating the mitochondrial dysfunction and alleviating GLMD using mitochondrial metabonomics. A rat model of GLMD was established by high-sugar and high-fat (HS-HF) diet. Rats were intragastrically given WE, POL, and TSG for 12 weeks. The liver mitochondrial metabolites were analyzed by ultra-high-performance liquid chromatography/mass spectrometry followed by multivariate statistical analysis to identify the differential metabolites and metabolic pathways. KEY FINDINGS: The WE, POL, and TSG could significantly restore the level of endogenous metabolites in liver mitochondria toward normal status. In total, sixteen, seven, and fourteen differential metabolites were identified in the liver mitochondrial samples obtained from the WE, GOL, and TSG groups, respectively. These metabolites were found to be mainly involved in glycerol phospholipid, histidine, alanine, aspartic acid, glutamate metabolism, and arginine biosynthesis. CONCLUSIONS: PMRP could improve the liver mitochondrial function by regulating the mitochondrial metabolic pathways to alleviate GLMD. Therefore, the application of PMRP might be a promising mitochondrial regulator/nutrient for alleviating GLMD-associated diseases and the mitochondrial metabonomics might provide insights into the evaluation of the efficacies and mechanisms of action of drugs.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Metabolômica , Extratos Vegetais/farmacologia , Polygonum/química , Animais , Cromatografia Líquida de Alta Pressão , Dieta Hiperlipídica , Modelos Animais de Doenças , Glicolipídeos/metabolismo , Masculino , Espectrometria de Massas , Doenças Metabólicas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Raízes de Plantas , Ratos , Ratos Sprague-Dawley
15.
Methods Mol Biol ; 2240: 231-241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423237

RESUMO

Mitochondria are the center for all metabolic pathways within the eukaryotic cell. Being responsible for the production of over 95% of the cell's requirement of adenosine triphosphate any effect on the function of mitochondria is sure to cause disruption of cellular activity and even viability. As such, it comes as no surprise that many diseases have mitochondrial dysfunction at their core. Understanding mitochondrial function and capacity in the context of a study is key for perceiving and explaining the behavior of said disease or toxic effect. Here, we describe a wide array of simple and yet elegant assays that can be easily implemented to ascertain the function of mitochondria and thus greatly improve the understanding of how a certain disease or compound causes its effects on the cellular function.


Assuntos
Bioensaio , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Testes de Toxicidade , Animais , Cálcio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos
16.
Cell Death Differ ; 28(4): 1174-1192, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33110216

RESUMO

Hepatic ischemic reperfusion injury (IRI) is a common complication of liver surgery. Although an imbalance between mitochondrial fission and fusion has been identified as the cause of IRI, the detailed mechanism remains unclear. Augmenter of liver regeneration (ALR) was reported to prevent mitochondrial fission by inhibiting dynamin-related protein 1 (Drp1) phosphorylation, contributing partially to its liver protection. Apart from phosphorylation, Drp1 activity is also regulated by small ubiquitin-like modification (SUMOylation), which accelerates mitochondrial fission. This study aimed to investigate whether ALR-mediated protection from hepatic IRI might be associated with an effect on Drp1 SUMOylation. Liver tissues were harvested from both humans and from heterozygous ALR knockout mice, which underwent IRI. The SUMOylation and phosphorylation of Drp1 and their modulation by ALR were investigated. Hepatic Drp1 SUMOylation was significantly increased in human transplanted livers and IRI-livers of mice. ALR-transfection significantly decreased Drp1 SUMOylation, attenuated the IRI-induced mitochondrial fission and preserved mitochondrial stability and function. This study showed that the binding of transcription factor Yin Yang-1 (YY1) to its downstream target gene UBA2, a subunit of SUMO-E1 enzyme heterodimer, was critical to control Drp1 SUMOylation. By interacting with YY1, ALR inhibits its nuclear import and dramatically decreases the transcriptional level of UBA2. Consequently, mitochondrial fission was significantly reduced, and mitochondrial function was maintained. This study showed that the regulation of Drp1 SUMOylation by ALR protects mitochondria from fission, rescuing hepatocytes from IRI-induced apoptosis. These new findings provide a potential target for clinical intervention to reduce the effects of IRI during hepatic surgery.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Dinaminas/genética , Mitocôndrias Hepáticas/metabolismo , Proteínas de Neoplasias/biossíntese , Traumatismo por Reperfusão/prevenção & controle , Sumoilação , Animais , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/genética , Dinaminas/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial , Proteínas de Neoplasias/genética , Fosforilação , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
17.
J Ethnopharmacol ; 267: 113498, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091496

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperplasia, Tumors and cancers are various forms of proliferative disorders affecting humans. Surgery is the main treatment approach while other options are also associated with adverse effects. There is therefore a need for the development of better alternative therapy that is cost effective and readily available with little or no adverse effect. Some bioactive agents in medicinal plants exhibit their anti-proliferative potential by induction of mitochondrial permeability transition pore (mPT) opening. Gloriosa superba, a medicinal plant, is folklorically used in the treatment of tumors and cancers. AIM OF THE STUDY: This study therefore aimed at investigating the effect of ethanol leaf extract of Gloriosa superba (EEGS) on mPT and monosodium glutamate-induced proliferative disorder in some specific tissues using rat model. MATERIALS AND METHODS: Isolated rat liver mitochondria were exposed to different concentrations (10, 30, 50, 70 and 90 µg/ml) of EEGS. The mPT pore opening, cytochrome c release, mitochondrial ATPase activity and lipid peroxidation were assessed spectrophotometrically. Caspases 9 and 3 activities were carried out using ELISA technique. Histological assessment of the liver, prostate and uterus of normal and monosodium glutamate (MSG)-treated rats were carried out. RESULTS: The results showed significant induction of mPT pore opening, release of cytochrome c, enhancement of mitochondrial ATPase activity, inhibition of lipid peroxidation and activation of caspases 9 and 3 activities by EEGS. The histological assessment revealed the presence of MSG-induced hepato-cellular damage, benign prostate hyperplasia and uterine hyperplasia which were ameliorated by EEGS co-administration. CONCLUSIONS: These findings suggest that EEGS contains putative agents that can induce apoptosis via induction of mPT pore opening and as well protect against MSG-induced hepato-cellular damage and proliferative disorder in prostate and uterus.


Assuntos
Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colchicaceae , Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Doenças Prostáticas/prevenção & controle , Doenças Uterinas/prevenção & controle , Útero/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colchicaceae/química , Modelos Animais de Doenças , Feminino , Hiperplasia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Extratos Vegetais/isolamento & purificação , Próstata/metabolismo , Próstata/patologia , Doenças Prostáticas/induzido quimicamente , Doenças Prostáticas/metabolismo , Doenças Prostáticas/patologia , Ratos Wistar , Transdução de Sinais , Glutamato de Sódio , Doenças Uterinas/induzido quimicamente , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Útero/metabolismo , Útero/patologia
18.
Mol Nutr Food Res ; 65(1): e1900942, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574416

RESUMO

Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.


Assuntos
Gorduras na Dieta/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Trifosfato de Adenosina/metabolismo , Animais , Gorduras na Dieta/farmacocinética , Estresse do Retículo Endoplasmático , Ácidos Graxos/efeitos adversos , Ácidos Graxos/farmacocinética , Humanos , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo
19.
J Bioenerg Biomembr ; 52(6): 421-430, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33156468

RESUMO

The omega 3 fatty acids (ω3FA) have been recommended for the treatment of Type 2 Diabetes Mellitus (T2DM) and its complications, but there are studies questioning those beneficial effects. In this research, we supplemented the short-chain ω3FA, alpha-linolenic acid (ALA), to a model of rats with T2DM and normoglycemic controls, for 5 months. We were mainly interested in studying the effects of diabetes and ALA on the physicochemical properties of mitochondrial membranes and the consequences on mitochondrial respiration. We found that the Respiratory Control (RC) of diabetic rats was 46% lower than in control rats; in diabetic rats with ALA supplement, it was only 23.9% lower, but in control rats with ALA supplement, the RC was 29.5% higher, apparently improving. Diabetes also decreased the membrane fluidity, changed the thermotropic characteristics of membranes, and increased the proportion of saturated fatty acids. ALA supplement partially kept regulated the physicochemical properties of mitochondrial membranes in induced rats. Our data indicate that diabetes decreased the membrane fluidity through changes in the fatty acids composition that simultaneously affected the RC, which means that the mitochondrial respiration is highly dependent on the physicochemical properties of the membranes. Simultaneously, it was followed the effects of ALA on the progress of diabetes and we found also that the supplementation of ALA helped in controlling glycaemia in rats induced to T2DM; however, in control non-induced rats, the supplementation of ALA derived in characteristics of initial development of diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Mitocôndrias Hepáticas/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Feminino , Masculino , Ratos , Ratos Wistar
20.
Sci Rep ; 10(1): 18367, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110171

RESUMO

Medium-chain triglycerides (MCT), containing C8-C12 fatty acids, are used to treat several pediatric disorders and are widely consumed as a nutritional supplement. Here, we investigated the role of the sirtuin deacylase Sirt5 in MCT metabolism by feeding Sirt5 knockout mice (Sirt5KO) high-fat diets containing either C8/C10 fatty acids or coconut oil, which is rich in C12, for five weeks. Coconut oil, but not C8/C10 feeding, induced periportal macrovesicular steatosis in Sirt5KO mice. 14C-C12 degradation was significantly reduced in Sirt5KO liver. This decrease was localized to the mitochondrial ß-oxidation pathway, as Sirt5KO mice exhibited no change in peroxisomal C12 ß-oxidation. Endoplasmic reticulum ω-oxidation, a minor fatty acid degradation pathway known to be stimulated by C12 accumulation, was increased in Sirt5KO liver. Mice lacking another mitochondrial C12 oxidation enzyme, long-chain acyl-CoA dehydrogenase (LCAD), also developed periportal macrovesicular steatosis when fed coconut oil, confirming that defective mitochondrial C12 oxidation is sufficient to induce the steatosis phenotype. Sirt5KO liver exhibited normal LCAD activity but reduced mitochondrial acyl-CoA synthetase activity with C12. These studies reveal a role for Sirt5 in regulating the hepatic response to MCT and may shed light into the pathogenesis of periportal steatosis, a hallmark of human pediatric non-alcoholic fatty liver disease.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuínas/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Óleo de Coco/administração & dosagem , Gorduras na Dieta/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Oxirredução , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA