Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.541
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635941

RESUMO

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia
2.
PLoS One ; 19(4): e0301713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593141

RESUMO

Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.


Assuntos
Potenciais Somatossensoriais Evocados , Tálamo , Ratos , Animais , Tálamo/fisiologia , Potenciais Evocados , Núcleos Talâmicos , Córtex Cerebral , Córtex Somatossensorial/fisiologia
3.
J Comp Neurol ; 532(3): e25595, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38427380

RESUMO

The thalamus is one of the most important divisions of the forebrain because it serves as the major hub for transmission of information between the brainstem and telencephalon. While many studies have investigated the thalamus in mammals, comparable analyses in reptiles are incomplete. To fill this gap in knowledge, the thalamus was investigated in crocodiles using a variety of morphological techniques. The thalamus consists of two parts: a dorsal and a ventral division. The dorsal thalamus was defined by its projections to the telencephalon, whereas the ventral thalamus lacked this circuit. The complement of nuclei in each part of the thalamus was identified and characterized. Alar and basal components of both the dorsal and ventral thalamus were distinguished. Although some alar-derived nuclei in the dorsal thalamus shared certain features, no grouping could account for all of the known nuclei. However, immunohistochemical observations suggested a subdivision of alar-derived ventral thalamic nuclei. In view of this, a different approach to the organization of the dorsal thalamus should be considered. Development of the dorsal thalamus is suggested to be one way to provide a fresh perspective on its organization.


Assuntos
Jacarés e Crocodilos , Animais , Tálamo/anatomia & histologia , Mamíferos , Núcleos Ventrais do Tálamo , Telencéfalo , Núcleos Talâmicos/anatomia & histologia
4.
Hum Brain Mapp ; 45(4): e26646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433705

RESUMO

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagem , Encéfalo , Córtex Cerebral
5.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457332

RESUMO

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Assuntos
Núcleos Talâmicos , Tálamo , Ratos , Animais , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Dor , Face , Córtex Somatossensorial/fisiologia
7.
Schizophr Res ; 264: 266-271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198878

RESUMO

AIM: We aimed to investigate potential discrepancies in the volume of thalamic nuclei between individuals with schizophrenia and healthy controls. METHODS: The imaging data for this study were obtained from the MCICShare data repository within SchizConnect. We employed probabilistic mapping technique developed by Iglesias et al. (2018). The analytical component entailed volumetric segmentation of the thalamus using the FreeSurfer image analysis suite. Our analysis focused on evaluating the differences in the volumes of various thalamic nuclei groups within the thalami, specifically the anterior, intralaminar, medial, posterior, lateral, and ventral groups in both the right and left thalami, between schizophrenia patients and healthy controls. We employed MANCOVA to analyse these dependent variables (volumes of 12 distinct thalamic nuclei groups), with diagnosis (SCZ vs. HCs) as the main explanatory variable, while controlling for covariates such as eTIV and age. RESULTS: The assumptions of MANCOVA, including the homogeneity of covariance matrices, were met. Specific univariate tests for the right thalamus revealed significant differences in the medial (F[1, 200] = 26.360, p < 0.001), and the ventral groups (F[1, 200] = 4.793, p = 0.030). For the left thalamus, the medial (F[1, 200] = 22.527, p < 0.001); posterior (F[1, 200] = 8.227, p = 0.005), lateral (F[1, 200] = 7.004, p = 0.009), and ventral groups (F[1, 200] = 9.309, p = 0.003) showed significant differences. CONCLUSION: These findings suggest that particular thalamic nuclei groups in both the right and left thalami may be most affected in schizophrenia, with more pronounced differences observed in the left thalamic nuclei. FUNDINGS: The authors received no financial support for the research.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos
8.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164593

RESUMO

The thalamic reticular nucleus (TRN) inhibits sensory thalamocortical relay neurons and is a key regulator of sensory attention as well as sleep and wake states. Recent developments have identified two distinct genetic subtypes of TRN neurons, calbindin-expressing (CB) and somatostatin-expressing (SOM) neurons. These subtypes differ in localization within the TRN, electrophysiological properties, and importantly, targeting of thalamocortical relay channels. CB neurons send inhibition to and receive excitation from first-order thalamic relay nuclei, while SOM neurons send inhibition to and receive excitation from higher-order thalamic areas. These differences create distinct channels of information flow. It is unknown whether TRN neurons form electrical synapses between SOM and CB neurons and consequently bridge first-order and higher-order thalamic channels. Here, we use GFP reporter mice to label and record from CB-expressing and SOM-expressing TRN neurons. We confirm that GFP expression properly differentiates TRN subtypes based on electrophysiological differences, and we identified electrical synapses between pairs of neurons with and without common GFP expression for both CB and SOM types. That is, electrical synapses link both within and across subtypes of neurons in the TRN, forming either homocellular or heterocellular synapses. Therefore, we conclude that electrical synapses within the TRN provide a substrate for functionally linking thalamocortical first-order and higher-order channels within the TRN.


Assuntos
Sinapses Elétricas , Núcleos Talâmicos , Camundongos , Animais , Sinapses Elétricas/fisiologia , Potenciais de Ação/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Tálamo
9.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37945348

RESUMO

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Assuntos
Córtex Auditivo , Vigília , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Neurônios GABAérgicos/fisiologia
10.
Cell Rep ; 42(11): 113378, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37925640

RESUMO

We developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The model simulates multiscale measures, including physiological firing rates, local field potentials (LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, mirror experimental findings. Physiological oscillations emerge spontaneously across frequency bands comparable to those recorded in vivo. We elucidate population-specific contributions to observed oscillation events and relate them to firing and presynaptic input patterns. The model offers a quantitative theoretical framework to integrate and interpret experimental data and predict its underlying cellular and circuit mechanisms.


Assuntos
Córtex Auditivo , Tálamo , Tálamo/fisiologia , Eletroencefalografia , Corpos Geniculados , Núcleos Talâmicos , Neurônios/fisiologia
11.
Neuroscience ; 532: 87-102, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778689

RESUMO

The thalamic reticular nucleus (TRN) is a thin sheet of GABAergic neurons surrounding the thalamus, and it regulates the activity of thalamic relay neurons. The TRN has been reported to be involved in sensory gating, attentional regulation, and some other functions. However, little is known about the contribution of the TRN to sequence learning. In the present study, we examined whether the TRN is involved in reward-based learning of action sequence with no eliciting stimuli (operant conditioning), by analyzing the performance of male and female Avp-Vgat-/- mice (Vgatflox/flox mice crossed to an Avp-Cre driver line) on tasks conducted in an operant box having three levers. Our histological and electrophysiological data demonstrated that in adult Avp-Vgat-/- mice, vesicular GABA transporter (VGAT) was absent in most TRN neurons and the GABAergic transmission from the TRN to the thalamus was largely suppressed. The performance on a task in which mice needed to press an active lever for food reward showed that simple operant learning of lever pressing and learning of win-stay and lose-shift strategies are not affected in Avp-Vgat-/- mice. In contrast, the performance on a task in which mice needed to press three levers in a correct order for food reward showed that learning of the order of lever pressing (action sequence learning) was impaired in Avp-Vgat-/- mice. These results suggest that the TRN plays an important role in action sequence learning.


Assuntos
Núcleos Talâmicos , Tálamo , Camundongos , Masculino , Feminino , Animais , Núcleos Talâmicos/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Condicionamento Operante
12.
Sci Rep ; 13(1): 16485, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779115

RESUMO

Deep brain stimulation (DBS) in thalamic reticular nucleus (TRN) neuron provides a novel treatment for drug-resistant epilepsy via the induced electrical field (EFs). However, the mechanisms underlying EF effects remain unclear. This paper investigated how EFs regulate low-threshold dendritic Ca2+ (dCa) response and thus contribute to the input-output relationship of TRN cell. Our results showed that EFs modulate firing modes differently in a neuronal state-dependent manner. At the depolarized state, EFs only regulate the spike timing of a somatic stimulus-evoked single action potential (AP) with less contribution in the regulation of dCa response but could induce the transition between a dendritic stimulus-evoked single AP and a tonic burst of APs via the moderate regulation of dCa response. At the hyperpolarized state, EFs have significant effects on the dCa response, which modulate the large dCa response-dependent burst discharge and even cause a transition from this type of burst discharge to a single AP with less dCa response. Moreover, EF effects on stimulation threshold of somatic spiking prominently depend on EF-regulated dCa responses and the onset time differences between the stimulus and EF give rise to the distinct effect in the EF regulation of dCa responses. Finally, the larger neuronal axial resistance tends to result in the dendritic stimulus-evoked dCa response independent of somatic state. Interestingly, in this case, the EF application could reproduce the similar somatic state-dependent dCa response to dendritic stimulus which occurs in the case of lower axial resistance. These results suggest that the influence of EF on neuronal activities depends on neuronal intrinsic properties, which provides insight into understanding how DBS in TRN neuron modulates epilepsy from the point of view of biophysics.


Assuntos
Neurônios , Tálamo , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Núcleos Talâmicos , Potenciais Evocados
13.
Science ; 382(6667): eadf9941, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824646

RESUMO

The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.


Assuntos
Neurônios GABAérgicos , Neurogênese , Tálamo , Humanos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/crescimento & desenvolvimento , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Feminino , Gravidez , Análise de Célula Única , Segundo Trimestre da Gravidez
14.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
15.
Brain Stimul ; 16(5): 1430-1444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37741439

RESUMO

BACKGROUND: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS: BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS: The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.


Assuntos
Nociceptividade , Núcleos Talâmicos , Núcleos Talâmicos/fisiologia , Tálamo , Encéfalo , Cognição
16.
J Comp Neurol ; 531(17): 1752-1771, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702312

RESUMO

In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.


Assuntos
Galago , Lobo Parietal , Animais , Galago/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Tálamo/fisiologia , Movimento/fisiologia , Núcleos Talâmicos
17.
Cell Rep ; 42(8): 112844, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498741

RESUMO

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.


Assuntos
Córtex Cerebral , Propofol , Tálamo , Estado de Consciência , Núcleos Talâmicos , Propofol/farmacologia , Vias Neurais
18.
Eur J Neurosci ; 58(2): 2469-2503, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287424

RESUMO

The thalamic reticular nucleus (TRN), receiving excitatory inputs from thalamic nuclei and cortical areas, regulates thalamic sensory processing through its inhibitory projections to thalamic nuclei. Higher cognitive function has been shown to affect this regulation from the prefrontal cortex (PFC). The present study examined how activation of the PFC modulates auditory or visual responses of single TRN cells in anesthetized rats, using juxta-cellular recording and labelling techniques. Electrical microstimulation of the medial PFC did not evoke cell activities in the TRN, but it altered sensory responses in the majority of auditory (40/43) and visual cells (19/20) with regard to response magnitude, latency and/or burst spiking. Alterations in response magnitude were bidirectional, either facilitation or attenuation, including induction of de novo cell activity and nullification of sensory response. Response modulation was observed in early (onset) and/or recurrent late responses. PFC stimulation, either before or after early response, affected late response. Alterations occurred in the two types of cells projecting to the first- and higher-order thalamic nuclei. Further, auditory cells projecting to the somatosensory thalamic nuclei were affected. Facilitation was induced at relatively high incidences as compared with that in the sub-threshold intra- or cross-modal sensory interplay in the TRN where attenuation is predominated in bidirectional modulation. Highly complex cooperative and/or competitive interactions between the top-down influence from the PFC and bottom-up sensory inputs are assumed to take place in the TRN to adjust attention and perception depending on the weights of external sensory signals and internal demands of higher cognitive function.


Assuntos
Vias Auditivas , Núcleos Talâmicos , Ratos , Animais , Ratos Wistar , Vias Auditivas/fisiologia , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Córtex Pré-Frontal
19.
Front Neural Circuits ; 17: 1155195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139079

RESUMO

External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.


Assuntos
Núcleos Talâmicos , Córtex Visual , Animais , Camundongos , Vias Visuais , Vias Neurais , Tálamo , Mamíferos
20.
Neuron ; 111(14): 2247-2257.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37172584

RESUMO

Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.


Assuntos
Pulvinar , Colículos Superiores , Camundongos , Animais , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Tálamo , Núcleos Talâmicos , Corpos Geniculados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA