Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206087

RESUMO

Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis's causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.


Assuntos
Leishmania infantum/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Triterpenos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Absorção Intestinal , Leishmania infantum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacocinética
2.
Parasit Vectors ; 14(1): 225, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902686

RESUMO

BACKGROUND: Schistosomiasis is a chronic parasitic disease that affects millions of people's health worldwide. Because of the increasing drug resistance to praziquantel (PZQ), which is the primary drug for schistosomiasis, developing new drugs to treat schistosomiasis is crucial. Oxadiazole-2-oxides have been identified as potential anti-schistosomiasis reagents targeting thioredoxin glutathione reductase (TGR). METHODS: In this work, one of the oxadiazole-2-oxides derivatives furoxan was used as the lead compound to exploit a series of novel furoxan derivatives for studying inhibitory activity against both recombinant Schistosoma japonicum TGR containing selenium (rSjTGR-Sec) and soluble worm antigen protein (SWAP) containing wild-type Schistosoma japonicum TGR (wtSjTGR), in order to develop a new leading compound for schistosomiasis. Thirty-nine novel derivatives were prepared to test their activity toward both enzymes. The docking method was used to detect the binding site between the active molecule and SjTGR. The structure-activity relationship (SAR) of these novel furoxan derivatives was preliminarily analyzed. RESULTS: It was found that several new derivatives, including compounds 6a-6d, 9ab, 9bd and 9be, demonstrated greater activity toward rSjTGR-Sec or SWAP containing wtSjTGR than did furoxan. Interestingly, all intermediates bearing hydroxy (6a-6d) showed excellent inhibitory activity against both enzymes. In particular, compound 6d with trifluoromethyl on a pyridine ring was found to have much higher inhibition toward both rSjTGR-Sec (half-maximal inhibitory concentration, IC50,7.5nM) and SWAP containing wtSjTGR (IC50 55.8nM) than furoxan. Additionally, the docking method identified the possible matching sites between 6d and Schistosoma japonicum TGR (SjTGR), which theoretically lends support to the inhibitory activity of 6d. CONCLUSION: The data obtained herein showed that 6d with trifluoromethyl on a pyridine ring could be a valuable leading compound for further study.


Assuntos
Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxidiazóis/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Animais , Antígenos de Helmintos/efeitos dos fármacos , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/uso terapêutico , Schistosoma japonicum/enzimologia , Selênio/química
3.
Bioorg Med Chem Lett ; 30(17): 127371, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738977

RESUMO

A series of thirty-one selenocompounds covering a wide chemical space was assessed for in vitro leishmanicidal activities against Leishmania infantum amastigotes. The cytotoxicity of those compounds was also evaluated on human THP-1 cells. Interestingly most tested derivatives were active in the low micromolar range and seven of them (A.I.3, A.I.7, B.I.1, B.I.2, C.I.7 C.I.8 and C.II.8) stood out for selectivity indexes higher than the ones exhibited by reference compounds mitelfosine and edelfosine. These leader compounds were evaluated against infected macrophages and their trypanothione reductase (TryR) inhibition potency was measured to further approach the mechanism by which they caused their action. Among them diselenide tested structures were pointed out for their ability to reduce infection rates. Three of the leader compounds inhibited TryR effectively, therefore this enzyme may be implicated in the mechanism of action by which these compounds cause their leishmanicidal effect.


Assuntos
Antiprotozoários/farmacologia , Cianatos/química , Leishmania infantum/efeitos dos fármacos , Compostos de Selênio/química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Cianatos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania infantum/fisiologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Compostos de Selênio/farmacologia , Relação Estrutura-Atividade , Células THP-1
4.
PLoS Negl Trop Dis ; 14(5): e0008339, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437349

RESUMO

Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypanothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypanosoma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461') and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus representing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Tolueno/análogos & derivados , Trypanosoma brucei brucei/efeitos dos fármacos , Antiprotozoários/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , NADH NADPH Oxirredutases/química , Ligação Proteica , Conformação Proteica , Tolueno/isolamento & purificação , Tolueno/farmacologia , Trypanosoma brucei brucei/enzimologia
5.
PLoS One ; 14(8): e0220628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31369628

RESUMO

Depletion of oxygen levels is a well-accepted model for induction of non-replicating, persistent states in mycobacteria. Increasing the stress levels in mycobacterium bacilli facilitates their entry into a non-cultivable, dormant state. In this study, it was shown that diphenyleneiodonium, an inhibitor of NADH oxidase, induced a viable, but non-culturable state in mycobacteria, having similar features to dormant bacilli, like loss of acid-fastness, upregulation of stress-regulated genes and decreased superoxide levels as compared to actively growing bacilli. Comprehensive, untargeted metabolic profiling also confirmed a decrease in biogenesis of amino acids, NAD, unsaturated fatty acids and nucleotides. Additionally, an increase in the level of lactate, fumarate, succinate and pentose phosphate pathways along with increased mycothiol and sulfate metabolites, similar to dormant bacilli, was observed in the granuloma. These non-cultivable bacilli were resuscitated by supplementation of fetal bovine serum, regaining their culturability in liquid as well as on agar medium. This study focused on the effect of diphenyleneiodonium treatment in causing mycobacteria to rapidly transition from an active state into a viable, but non-cultivable state, and comparing their characteristics with dormant phenotypes.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Oniocompostos/farmacologia , Aminoácidos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Complexos Multienzimáticos/antagonistas & inibidores , Mycobacterium tuberculosis/metabolismo , NAD/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Nucleotídeos/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
6.
Comput Biol Chem ; 79: 36-47, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710804

RESUMO

Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.


Assuntos
Antiprotozoários/farmacologia , Produtos Biológicos/farmacologia , Simulação por Computador , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Brasil , Doença de Chagas/tratamento farmacológico , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
7.
PLoS Negl Trop Dis ; 12(11): e0006969, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475811

RESUMO

Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against Leishmaniasis. This enzyme is fundamental for parasite survival in the host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize hydrogen peroxide produced by host macrophages during infection. In order to identify new lead compounds against Leishmania we developed and validated a new luminescence-based high-throughput screening (HTS) assay that allowed us to screen a library of 120,000 compounds. We identified a novel chemical class of TR inhibitors, able to kill parasites with an IC50 in the low micromolar range. The X-ray crystal structure of TR in complex with a compound from this class (compound 3) allowed the identification of its binding site in a pocket at the entrance of the NADPH binding site. Since the binding site of compound 3 identified by the X-ray structure is unique, and is not present in human homologs such as glutathione reductase (hGR), it represents a new target for drug discovery efforts.


Assuntos
Antiprotozoários/química , Inibidores Enzimáticos/química , Leishmania/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmaniose/parasitologia , Modelos Moleculares , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Bioorg Med Chem ; 26(17): 4850-4862, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30173929

RESUMO

Despite the impressive scientific and technological advances of recent decades, no effective treatment is currently available for Chagas disease. Our research group has been studying the design and synthesis of analogues of natural lignans aiming to identify compounds with antiparasitic activity. This article reports the synthesis of 42 novel bis-heterocyclic derivatives and the structure-activity relationship study conducted based on results of biological assays against Trypanosoma cruzi amastigotes. Thirty-seven compounds were active, and eight of them had GI50 values lower than 100 µM (GI50 88.4-12.2 µM). A qualitative structure activity relationship study using three dimensional descriptors was carried out and showed a correlation between growth inhibitory potency and the presence of bulky hydrophobic groups located at rings A and D of the compounds. Compound 3-(3,4-dimethoxyphenyl)-5-((4-(4-pentylphenyl)-1H-1,2,3-triazol-1-yl)methyl)isoxazole (31) was the most active in the series (GI50 12.2 µM), showing, in vitro, low toxicity and potency similar to benznidazole (GI50 10.2 µM). These results suggest that this compound can be a promising scaffold for the design of new trypanocidal compounds.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Lignanas/química , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Células THP-1 , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
9.
Molecules ; 23(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973498

RESUMO

Leishmania major (L. major) is a protozoan parasite that causes cutaneous leishmaniasis. About 12 million people are currently infected with an annual incidence of 1.3 million cases. The purpose of this study was to synthesize a small library of novel thiophene derivatives, and evaluate its parasitic activity, and potential mechanism of action (MOA). We developed a structure⁻activity relationship (SAR) study of the thiophene molecule 5A. Overall, eight thiophene derivatives of 5A were synthesized and purified by silica gel column chromatography. Of these eight analogs, the molecule 5D showed the highest in vitro activity against Leishmania major promastigotes (EC50 0.09 ± 0.02 µM), with an inhibition of the proliferation of intracellular amastigotes higher than 75% at only 0.63 µM and an excellent selective index. Moreover, the effect of 5D on L. major promastigotes was associated with generation of reactive oxygen species (ROS), and in silico docking studies suggested that 5D may play a role in inhibiting trypanothione reductase. In summary, the combined SAR study and the in vitro evaluation of 5A derivatives allowed the identification of the novel molecule 5D, which exhibited potent in vitro anti-leishmanial activity resulting in ROS production leading to cell death with no significant cytotoxicity towards mammalian cells.


Assuntos
Antiprotozoários/síntese química , Leishmania major/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Tiofenos/síntese química , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Leishmania major/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia
10.
Molecules ; 23(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393867

RESUMO

Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.


Assuntos
Allium/química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Extratos Vegetais/química , Trypanosoma brucei brucei/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antiprotozoários/química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Metabolismo Secundário/fisiologia , Espectrometria de Massas em Tandem , Trypanosoma brucei brucei/crescimento & desenvolvimento
11.
J Cell Biochem ; 119(4): 3067-3080, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29052925

RESUMO

Fascioliasis is caused by the helminth parasites of genus Fasciola. Thioredoxin glutathione reductase (TGR) is an important enzyme in parasitic helminths and plays an indispensable role in its redox biology. In the present study, we conducted a structure-based virtual screening of natural compounds against the Fasciola gigantica TGR (FgTGR). The compounds were docked against FgTGR in four sequential docking modes. The screened ligands were further assessed for Lipinski and ADMET prediction so as to evaluate drug proficiency and likeness property. After refinement, three potential inhibitors were identified that were subjected to 50 ns molecular dynamics simulation and free energy binding analyses to evaluate the dynamics of protein-ligand interaction and the stability of the complexes. Key residues involved in the interaction of the selected ligands were also determined. The results suggested that three top hits had a negative binding energy greater than GSSG (-91.479 KJ · mol-1 ), having -152.657, -141.219, and -92.931 kJ · mol-1 for compounds with IDs ZINC85878789, ZINC85879991, and ZINC36369921, respectively. Further analysis showed that the compound ZINC85878789 and ZINC85879991 displayed substantial pharmacological and structural properties to be a drug candidate. Thus, the present study might prove useful for the future design of new derivatives with higher potency and specificity.


Assuntos
Antiplatelmínticos/química , Inibidores Enzimáticos/química , Fasciola/enzimologia , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Animais , Antiplatelmínticos/farmacologia , Sítios de Ligação , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Fasciola/efeitos dos fármacos , Proteínas de Helminto/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Análise de Componente Principal , Multimerização Proteica , Homologia Estrutural de Proteína
12.
Mol Divers ; 21(3): 697-711, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28656524

RESUMO

American trypanosomiasis or Chagas disease caused by the protozoan Trypanosoma cruzi (T. cruzi) is an important endemic trypanosomiasis in Central and South America. This disease was considered to be a priority in the global plan to combat neglected tropical diseases, 2008-2015, which indicates that there is an urgent need to develop more effective drugs. The development of new chemotherapeutic agents against Chagas disease can be related to an important biochemical feature of T. cruzi: its redox defense system. This system is based on trypanothione ([Formula: see text],[Formula: see text]-bis(glutathyonil)spermidine) and trypanothione reductase (TR), which are rather unique to trypanosomes and completely absent in mammalian cells. In this regard, tricyclic compounds have been studied extensively due to their ability to inhibit the T. cruzi TR. However, synthetic derivatives of natural products, such as [Formula: see text]-carboline derivatives ([Formula: see text]-CDs), as potential TR inhibitors, has received little attention. This study presents an analysis of the structural and physicochemical properties of commercially available [Formula: see text]-CDs in relation to compounds tested against T. cruzi in previously reported enzymatic assays and shows that [Formula: see text]-CDs cover chemical space that has not been considered for the design of TR inhibitors. Moreover, this study presents a ligand-based approach to discover potential TR inhibitors among commercially available [Formula: see text]-CDs, which could lead to the generation of promising [Formula: see text]-CD candidates.


Assuntos
Carbolinas/química , Inibidores Enzimáticos/química , NADH NADPH Oxirredutases/antagonistas & inibidores , Tripanossomicidas/química , Trypanosoma cruzi/enzimologia , Carbolinas/farmacologia , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Glutationa/análogos & derivados , Glutationa/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , NADH NADPH Oxirredutases/química , Espermidina/análogos & derivados , Espermidina/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
13.
Planta Med ; 83(18): 1377-1383, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597454

RESUMO

In a recent study, several new derivatives of antimycin A (AMA) were produced by means of a novel transacylation reaction, and these were shown to mediate selective toxicity toward cultured A549 human lung epithelial adenocarcinoma cells, as compared with WI-38 normal human lung fibroblasts. The purpose of our study was to investigate whether the analogues all expressed their cytotoxicity by the same mechanism. This was done by studying the effects of the compounds in several types of cell lines. In comparison with 2-O-methylantimycin, which acts at the locus of Bcl-2, none of the new derivatives exhibited a difference in cytotoxicity toward cells expressing different levels of Bcl-2. In cell lines that over- or underexpress estrogen or Her2 receptors, AMA analogue 2 exhibited Her2 receptor dependency at low concentration. Three compounds (1, 4, and 6) exhibited concentration-dependent increases in reactive oxygen species, with 6 being especially potent. Compounds 5 and 6 diminished mitochondrial membrane potential more potently than AMA, and 1 also displayed enhanced activity relative to 2-4. Interestingly, only 1 and AMA displayed strong inhibition of the respiratory chain, as measured by monitoring NADH (reduced nicotinamide adenine dinucleotide) oxidase. Because four of the analogues have positively charged substituents, two of these (4 and 6) were studied to see whether the observed effects were due to much higher level of accumulation within the mitochondria. Their presence in the mitochondria was not dramatically enhanced. Neither of the two presently characterized mechanisms of cell killing by AMA can fully account for the observed results.


Assuntos
Antimicina A/análogos & derivados , Citotoxinas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Acilação , Animais , Antimicina A/química , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Fibroblastos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética
14.
J Inorg Biochem ; 172: 9-15, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414928

RESUMO

Leishmaniasis is an infection caused by protozoa of the genus Leishmania and transmitted by sandflies. Current treatments are expensive and time-consuming, involving Sb(V)-based compounds, lipossomal amphotericin B and miltefosine. Recent studies suggest that inhibition of trypanothione reductase (TR) could be a specific target in the development of new drugs because it is essential and exclusive to trypanosomatids. This work presents the synthesis and characterization of new iminodibenzyl derivatives (dado) with ethylenediamine (ea), ethanolamine (en) and diethylenetriamine (dien) and their copper(II) complexes. Computational methods indicated that the complexes were highly lipophilic. Pro-oxidant activity assays by oxidation of the dihydrorhodamine (DHR) fluorimetric probe showed that [Cu(dado-ea)]2+ has the highest rate of oxidation, independent of H2O2 concentration. The toxicity to L. amazonensis promastigotes and RAW 264,7 macrophages was assessed, showing that dado-en was the most active new compound. Complexation to copper did not have an appreciable effect on the toxicity of the compounds.


Assuntos
Benzilaminas/química , Leishmania/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Benzilaminas/farmacologia , Benzilaminas/toxicidade , Simulação por Computador , Cobre/química , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Leishmania/enzimologia , Ligantes , Macrófagos/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução
15.
J Biol Regul Homeost Agents ; 30(3): 649-653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27655481

RESUMO

Cancer includes a number of related diseases due to abnormal cell proliferation that spreads to nearby tissues. Many compounds (physical, chemical and biological) have been used to try to halt this abnormal proliferation, but the therapeutic results are poor, due also to the side effects. It has been reported that ecto-nicotinamide adenine dinucleotide oxidase di-sulfide-thiol exchanger 2 (ENOX2), also known as tumor-associated nicotinamide adenine dinucleotide oxidase (tNOX), was found to be located on the cancer cell surface, essential for cancer cell growth. Capsaicin and other anti-oxidants are capable of inhibiting tNOX, causing apoptosis of cells, exerting anti-tumor activity. It is interesting that some authors reported that ENOX2 is present in the serum of cancer patients several years before the clinical symptoms of the tumor. However, this result has to be confirmed. In this article we discuss ENOX2 and its inhibition as a hope of improving cancer therapy.


Assuntos
NADH NADPH Oxirredutases/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Detecção Precoce de Câncer , Indução Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , NAD/fisiologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/sangue , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia
16.
Biomed Pharmacother ; 83: 141-152, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27470561

RESUMO

Visceral leishmaniasis (VL) has been considered as one of the most fatal form of leishmaniasis which affects 70 countries worldwide. Increased drug resistance in Indian subcontinent urged the need of new antileishmanial compounds with high efficacy and negligible toxicity. Imipramine compounds have shown impressive antileishmanial activity. To find out most potent analogue from imipramine series and explore the inhibitory activity of imipramine, we docked imipramine analogues (n=93,328) against trypanothione reductase in three sequential modes. Furthermore, 98 ligands having better docking score than reference ligand were subjected to ADME and toxicity, binding energy calculation and docking validation. Finally, Molecular dynamic and single point energy was estimated for best two ligands. This study uncovers the inhibitory activity of imipramine against Leishmania parasites.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Imipramina/análogos & derivados , Imipramina/farmacologia , Leishmania/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Teoria Quântica , Sítios de Ligação , Imipramina/química , Imipramina/toxicidade , Leishmania/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NADH NADPH Oxirredutases/metabolismo , Reprodutibilidade dos Testes , Solventes , Termodinâmica
17.
J Chem Inf Model ; 56(7): 1357-72, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27253773

RESUMO

Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.


Assuntos
Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Animais , Anti-Helmínticos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Conformação Molecular , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo
18.
Curr Protein Pept Sci ; 17(3): 243-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983886

RESUMO

One of the most neglected disease is the Sleeping sickness or Human African Trypanosomiasis (HAT), which is mostly restricted to poor regions of Africa. The disease is caused by parasitic infection with Trypanosoma brucei (T. brucei), and is acquired through the bite of the tsetse fly. In the first stage of the disease, the parasite is in the blood, but in stage 2, the infective form reaches the brain, causing great weakness and death. The few existing drugs against this infection, are highly toxic, and can cause the emergence of resistant forms of the parasite. Also, these drugs are not readily available. New drugs are needed. Many researchers are investigating new enzyme targets for the parasite, searching for more efficient and selective inhibitors that are capable to cause the parasite death with less toxicity to the host. Trypanothione reductase, farnesyl diphosphate synthase, 6-phospho-gluconate dehydrogenase, and UDP 4'-galactose epimerase are some of the enzymes involved in the studies reported on this review. In addition, we have applied ligandbased- virtual screening, using Random Forest associated with structure-based-virtual screening (docking), to a small dataset of 225 alkaloids from the Menispermaceae family (in-house data bank). The aim of this study is to select structures with potential inhibitory activity against trypanothione reductase from Trypanosoma brucei. The computer-aided drug design study selected certain alkaloids that might be worth further investigation.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo
19.
Nat Prod Commun ; 11(1): 57-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26996020

RESUMO

Trypanothione reductase (TryR) is a key enzyme in the metabolism of Trypanosoma cruzi, the parasite responsible for Chagas disease. The available repertoire of TryR inhibitors relies heavily on synthetic substrates of limited structural diversity, and less on plant-derived natural products. In this study, a molecular docking procedure using a Lamarckian Genetic Algorithm was implemented to examine the protein-ligand binding interactions of strong in vitro inhibitors for which no X-ray data is available. In addition, a small, skeletally diverse, set of natural alkaloids was assessed computationally against T. cruzi TryR in search of new scaffolds for lead development. The preferential binding mode (low number of clusters, high cluster population), together with the deduced binding interactions were used to discriminate among the virtual inhibitors. This study confirms the prior in vitro data and proposes quebrachamine, cephalotaxine, cryptolepine, (22S,25S)-tomatidine, (22R,25S)-solanidine, and (22R,25R)-solasodine as new alkaloid scaffold leads in the search for more potent and selective TryR inhibitors.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Plantas/química , Trypanosoma cruzi/enzimologia , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
20.
Phytomedicine ; 22(12): 1133-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26547537

RESUMO

BACKGROUND: Leishmaniasis comprises several infectious diseases caused by protozoa parasites of Leishmania genus. In recent years, there has been a growing interest in the therapeutic use of natural products to treat parasitic diseases. Among them Croton cajucara Benth. (Euphorbiaceae) is a plant found in the Amazonian region with a history of safe use in folk medicine. PURPOSE: The purpose of this study was to investigate the effects of clerodane diterpenes, trans-dehydrocrotonin (DCTN), trans-crotonin (CTN) and acetylaleuritolic acid (AAA) obtained from powdered bark of C. cajucara against promastigotes, axenic and intracellular amastigotes of Leishmania amazonensis. Furthermore, the effects of DCTN and CTN on the trypanotiona reductase enzyme were also investigated. The extraction of the terpenes was carried out as previously reported (Maciel et al., 1998; 2003). METHODS: The effect of the isolated compounds (DCTN, CTN and AAA) from the bark of C. cajucara was assessed in vitro against promastigotes, axenic amastigotes and intracellular amastigotes of L. amazonensis by counting of remaining parasites in a Neubauer chamber in comparison to pentamidine used as standard drug. The action of natural products on trypanothione reductase was assessed using soluble protein fraction of promastigotes. The assays were performed by incubation with HEPES, EDTA, NADPH and trypanothione disulfide to quantify the NAPH consumption by TryR. RESULTS: The results showed very high efficacy, especially of the diterpene DCTN, against promastigotes (IC50 = 6.30 ± 0.06 µg/ml) and axenic amastigotes (IC50 = 19.98 ± 0.05 µg/ml) of L. amazonenesis. The cytotoxic effect of the best active natural product was evaluated on mouse peritoneal infected macrophages (IC50 = 0.47 ± 0.03 µg/ml in 24 h of culture), and the treatment revealed that DCTN never reaches toxic concentrations while reducing the infection and, most importantly, with no toxicity (>100 µg/ml with 0% of macrophage kill) when compared to pentamidine (37.5 µg/ml with 100% of macrophage kill). Furthermore, all of the natural products assayed on the trypanothione reductase enzyme inhibited the enzyme activity compared to the control. CONCLUSION: Clerodane diterpenes from C. cajucara showed promising in vitro antileishmanial effects against L. amazonensis, specially the DCTN with no macrophage toxicity up to the assayed concentration. In addition, the action on trypanothione reductase enzyme revealed a possible mechanism of action.


Assuntos
Antiprotozoários/farmacologia , Croton/química , Diterpenos Clerodânicos/farmacologia , Leishmania/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Animais , Antiprotozoários/isolamento & purificação , Diterpenos , Diterpenos Clerodânicos/isolamento & purificação , Concentração Inibidora 50 , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Medicina Tradicional , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Casca de Planta/química , Triterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA