Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503157

RESUMO

BACKGROUND: c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS: The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS: The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-met , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo
2.
Phytomedicine ; 126: 155459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417243

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Naftoquinonas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2 , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/farmacologia
3.
Int J Cancer ; 154(9): 1626-1638, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38196144

RESUMO

Due to the lack of a precise in vitro model that can mimic the nature microenvironment in osteosarcoma, the understanding of its resistance to chemical drugs remains limited. Here, we report a novel three-dimensional model of osteosarcoma constructed by seeding tumor cells (MG-63 and MNNG/HOS Cl no. 5) within demineralized bone matrix scaffolds. Demineralized bone matrix scaffolds retain the original components of the natural bone matrix (hydroxyapatite and collagen type I), and possess good biocompatibility allowing osteosarcoma cells to proliferate and aggregate into clusters within the pores. Growing within the scaffold conferred elevated resistance to doxorubicin on MG-63 and MNNG/HOS Cl no. 5 cell lines as compared to two-dimensional cultures. Transcriptomic analysis showed an increased enrichment for drug resistance genes along with enhanced glutamine metabolism in osteosarcoma cells in demineralized bone matrix scaffolds. Inhibition of glutamine metabolism resulted in a decrease in drug resistance of osteosarcoma, which could be restored by α-ketoglutarate supplementation. Overall, our study suggests that microenvironmental cues in demineralized bone matrix scaffolds can enhance osteosarcoma drug responses and that targeting glutamine metabolism may be a strategy for treating osteosarcoma drug resistance.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Glutamina , Matriz Óssea/metabolismo , Matriz Óssea/patologia , Metilnitronitrosoguanidina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Microambiente Tumoral
4.
Clin Cancer Res ; 30(4): 849-864, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37703185

RESUMO

PURPOSE: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN: Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS: PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS: The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.


Assuntos
Neoplasias Ósseas , Óxidos N-Cíclicos , Indolizinas , Osteossarcoma , Compostos de Piridínio , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaios Antitumorais Modelo de Xenoenxerto , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
5.
J Nanobiotechnology ; 21(1): 201, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365598

RESUMO

Malignant bone tumors result in high rates of disability and death and are difficult to treat in terms of killing tumors and repairing bone defects. Compared with other hyperthermia strategies, magnetic hyperthermia has become an effective therapy for treating malignant bone tumors due to its lack of depth limitations. However, tumor cells express heat shock protein (HSP) to resist hyperthermia, which reduces its curative effect. Competitive ATP consumption can reduce HSP production; fortunately, the basic principle of starvation therapy by glucose oxidase (GOx) is consuming glucose to control ATP production, thereby restricting HSP generation. We developed a triple-functional magnetic gel (Fe3O4/GOx/MgCO3@PLGA) as a magnetic bone repair hydrogels (MBRs) with liquid‒solid phase transition capability to drive magneto-thermal effects to simultaneously trigger GOx release and inhibit ATP production, reducing HSP expression and thereby achieving synergistic therapy for osteosarcoma treatment. Moreover, magnetic hyperthermia improves the effect of starvation therapy on the hypoxic microenvironment and achieves a reciprocal strengthening therapeutic effect. We further demonstrated that in situ MBRs injection effectively suppressed tumor growth in 143B osteosarcoma tumor-bearing mice and an in-situ bone tumor model in the rabbit tibial plateau. More importantly, our study also showed that liquid MBRs could effectively match bone defects and accelerate their reconstruction via magnesium ion release and enhanced osteogenic differentiation to augment the regeneration of bone defects caused by bone tumors, which generates fresh insight into malignant bone tumor treatment and the acceleration of bone defect repair.


Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Osteossarcoma , Camundongos , Animais , Coelhos , Osteogênese , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Regeneração Óssea , Proteínas de Choque Térmico/metabolismo , Fenômenos Magnéticos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Am J Chin Med ; 51(4): 1041-1066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120706

RESUMO

Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Capsaicina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/farmacologia
7.
Phytother Res ; 37(6): 2262-2279, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36726293

RESUMO

Distal metastases from breast cancer, especially bone metastases, are extremely common in the late stages of the disease and are associated with a poor prognosis. EMT is a biomarker of the early process of bone metastasis, and MMP-9 and MMP-13 are important osteoclastic activators. Previously, we found that meso-Hannokinol (HA) could significantly inhibit EMT and MMP-9 and MMP-13 expressions in breast cancer cells. On this basis, we further explored the role of HA in breast cancer bone metastasis. In vivo, we established a breast cancer bone metastasis model by intracardially injecting breast cancer cells. Intraperitoneal injections of HA significantly reduced breast cancer cell metastasis to the leg bone in mice and osteolytic lesions caused by breast cancer. In vitro, HA inhibited the migration and invasion of breast cancer cells and suppressed the expressions of EMT, MMP-9, MMP-13, and other osteoclastic activators. HA inhibited EMT and MMP-9 by activating the ROS/JNK pathway as demonstrated by siJNK and SP600125 inhibition of JNK phosphorylation and NAC scavenging of ROS accumulation. Moreover, HA promoted bone formation and inhibited bone resorption in vitro. In conclusion, our findings suggest that HA may be an excellent candidate for treating breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas , Osteólise , Animais , Camundongos , Metaloproteinase 9 da Matriz , Espécies Reativas de Oxigênio , Metaloproteinase 13 da Matriz , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Metástase Neoplásica
8.
Mol Med ; 29(1): 15, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717782

RESUMO

BACKGROUND: Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS: After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS: HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION: HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Adolescente , Reparo de DNA por Recombinação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
9.
Purinergic Signal ; 19(1): 13-27, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35478452

RESUMO

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 µL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,ß-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,ß-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,ß-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Eletroacupuntura , Ratos , Animais , Hiperalgesia/metabolismo , Dor do Câncer/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Dor/metabolismo , Neoplasias Ósseas/metabolismo , Analgésicos , Gânglios Espinais/metabolismo
10.
Comput Math Methods Med ; 2022: 2011625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669373

RESUMO

Epimedium is a traditional Chinese medicine that is most commonly prescribed by practitioners of Chinese medicine for the clinical treatment of malignant tumor bone metastasis. The main component of Epimedium is icariin (ICA). Studies have shown that ICA inhibits bone resorption of osteoclasts through the OPG/RANKL/RANK signaling pathway. Osteoclasts are the only cells in the body that have a bone-destroying capability. The OPG/RANKL/RANK system consists of cytokines that play major roles in osteoclast formation. Therefore, our study selected the OPG/RANKL/RANK system as the research target to investigate the effect of ICA on nude mice with lung cancer bone metastasis. We established the model of bone metastasis in nude mice, intervened the model with icariin and zoledronic acid, and detected the levels of OPG and RANKL by ELISA and western blot. The results showed that ICA had a significant inhibitory effect on bone metastases in nude mice. ICA achieved its antibone metastasis effect in nude mice with lung cancer via inhibiting RANKL expression and simultaneously increasing OPG expression. ICA not only alleviated osteolytic bone destruction caused by bone metastases, but it also reduced weight loss in tumor-bearing nude mice at the late stage of the experiment. The role of ICA in preventing bone metastasis of lung cancer merits further investigation.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Flavonoides/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Osteoprotegerina/metabolismo , Osteoprotegerina/uso terapêutico , Ligante RANK/metabolismo , Ligante RANK/uso terapêutico
11.
J Ethnopharmacol ; 296: 115433, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35690338

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cinobufagin (Huachansu), an aqueous extract from the dried skin of the toad Bufo bufo gargarizans Cantor (frog skin), is a biologically active ingredient of a traditional Chinese medicine cinobufacini that can treat multiple bone pathological conditions such as bone pain, bone tumors, and osteosarcoma. AIM OF THE STUDY: The study aimed to explore the roles and molecular mechanisms of cinobufagin underlying osteosarcoma development and doxorubicin (ADR) resistance. MATERIALS AND METHODS: Cell viability, migration, and invasion were examined by CCK-8, wound healing, and Transwell invasion assays, respectively. RNA sequencing analysis was performed in MNNG/HOS cells treated with or without cinobufagin. The relationships of cinobufagin, forkhead box O1 (FOXO1), and Fc fragment of IgG binding protein (FCGBP) were examined by luciferase reporter, immunofluorescence (IF), RT-qPCR, and chromatin immunoprecipitation (ChIP) assays together with weighted gene co-expression network analysis (WGCNA) analysis. Epithelial-mesenchymal transition (EMT) marker levels were examined through the Western blot assay. The function and molecular basis of cinobufagin in osteosarcoma were further investigated by mouse xenograft experiments. RESULTS: Cinobufagin reduced cell viability, weakened ADR resistance, and inhibited cell migration/invasion/EMT in osteosarcoma cells. Cinobufagin enhanced FOXO1-mediated transcription of downstream genes including FCGBP. FCGBP knockdown partly abrogated the effect of cinobufagin on osteosarcoma cell development. Cinobufagin inhibited the growth of mouse osteosarcoma xenografts in vivo. Cinobufagin reduced the expression of Ki-67 and MMP9 and facilitated caspase-3 expression in osteosarcoma xenografts. CONCLUSION: Cinobufagin suppressed tumor progression and reduced ADR resistance by potentiating FOXO1-mediated transcription of FCGBP in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Venenos de Anfíbios , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Bufanolídeos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo
12.
Biol Pharm Bull ; 45(6): 730-737, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35431285

RESUMO

Licochalcone B (LicB) is a flavonoid derived from the Chinese medicinal herb Glycyrrhiza uralensis Fisch. Several previous studies have demonstrated the wide range of pharmacological activities shown by LicB. In this study, we investigated the anticancer effects of LicB in osteosarcoma (OS) tumor cells and its underlying mechanisms. According to the Cell Counting Kit-8 (CCK8) analysis and 5-ethynil-2'-deoxyuridine (EdU) staining results, we found that LicB suppresses OS cells (MG-63 and U2OS) growth depending on its concentration. Furthermore, flow cytometry and Western blot revealed that LicB promoted autophagy and apoptosis in OS cells in a dose-dependent manner. LicB treatment not only decreased the levels of Bcl-2, p62, Caspase-3, and Ki67 protein in MG-63 and U2OS cell lines but also increased the levels of Cleaved Caspase-3, Beclin1, Bax, Atg7, and LC3B. Mechanistically, LicB induced cell apoptosis by promoting the apoptosis-related cleavage of Caspase-3, while suppressing the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway to induce autophagy. The present work is the first to illustrate that LicB can serve as a potential drug candidate for tumor treatment owing to its ability to enhance autophagy and apoptosis, and suppress OS proliferation by inactivating the PI3K/AKT/mTOR pathway.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Apoptose , Autofagia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Chalconas , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
13.
J Bone Miner Res ; 37(5): 983-996, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220602

RESUMO

Enchondromas and chondrosarcomas are common cartilage neoplasms that are either benign or malignant, respectively. The majority of these tumors harbor mutations in either IDH1 or IDH2. Glutamine metabolism has been implicated as a critical regulator of tumors with IDH mutations. Using genetic and pharmacological approaches, we demonstrated that glutaminase-mediated glutamine metabolism played distinct roles in enchondromas and chondrosarcomas with IDH1 or IDH2 mutations. Glutamine affected cell differentiation and viability in these tumors differently through different downstream metabolites. During murine enchondroma-like lesion development, glutamine-derived α-ketoglutarate promoted hypertrophic chondrocyte differentiation and regulated chondrocyte proliferation. Deletion of glutaminase in chondrocytes with Idh1 mutation increased the number and size of enchondroma-like lesions. In contrast, pharmacological inhibition of glutaminase in chondrosarcoma xenografts reduced overall tumor burden partially because glutamine-derived non-essential amino acids played an important role in preventing cell apoptosis. This study demonstrates that glutamine metabolism plays different roles in tumor initiation and cancer maintenance. Supplementation of α-ketoglutarate and inhibiting GLS may provide a therapeutic approach to suppress enchondroma and chondrosarcoma tumor growth, respectively. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Neoplasias Ósseas , Condroma , Condrossarcoma , Glutamina , Isocitrato Desidrogenase , Mutação , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Cartilagem/metabolismo , Condroma/genética , Condroma/metabolismo , Condroma/patologia , Condrossarcoma/genética , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos , Camundongos
14.
J Nanobiotechnology ; 20(1): 44, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062957

RESUMO

BACKGROUND: The overall survival rate of osteosarcoma (OS) patients has not been improved for 30 years, and the diagnosis and treatment of OS is still a critical issue. To improve OS treatment and prognosis, novel kinds of theranostic modalities are required. Molecular optical imaging and phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), are promising strategies for cancer theranostics that exhibit high imaging sensitivity as well as favorable therapeutic efficacy with minimal side effect. In this study, semiconducting polymer nanoparticles (SPN-PT) for OS-targeted PTT/PDT are designed and prepared, using a semiconducting polymer (PCPDTBT), providing fluorescent emission in the second near-infrared window (NIR-II, 1000 - 1700 nm) and photoacoustic (PA) signal in the first near-infrared window (NIR-I, 650 - 900 nm), served as the photosensitizer, and a polyethylene glycolylated (PEGylated) peptide PT, providing targeting ability to OS. RESULTS: The results showed that SPN-PT nanoparticles significantly accelerated OS-specific cellular uptake and enhanced therapeutic efficiency of PTT and PDT effects in OS cell lines and xenograft mouse models. SPN-PT carried out significant anti-tumor activities against OS both in vitro and in vivo. CONCLUSIONS: Peptide-based semiconducting polymer nanoparticles permit efficient NIR-II fluorescence/NIR-I PA dual-modal imaging and targeted PTT/PDT for OS.


Assuntos
Nanopartículas/química , Imagem Óptica/métodos , Osteossarcoma , Fotoquimioterapia/métodos , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/metabolismo , Peptídeos/química , Polímeros/química
15.
Bioengineered ; 13(2): 2710-2719, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34738877

RESUMO

Perillaldehyde (PAH), one of the active ingredients of the traditional Chinese medicine (TCM) plant Perilla frutescens, is widely used and exerts crucial anti-cancer activities. The aim of current study is to illustrate the potential mechanisms of PAH-mediated regulation of bone metastasis and osteoclastogenesis in prostate cancer (PCa) cell lines. Effects of PAH on proliferation, invasion and migration of PC-3 cells were assessed with the Cell Counting Kit-8 (CCK-8) assay and Transwell assays, respectively. Effects of PAH on stem cell characteristics of PC-3 cells were evaluated by cell-matrix adhesion assay, colony formation assay, spheroid formation assay, as well as western blot . The anti-metastasis and anti-osteoclastogenesis activity of PAH in RAW264.7 cells was examined by osteoclast differentiation assay and western blot. The protein levels of CD133 and CD44 in PC-3 cells and the activity of nuclear factor kappa B (NF-κB) signaling pathway in RAW264.7 cells were measured by western blot. PAH suppressed proliferation, invasion and migration of PC-3 cells, prevented stem cell characteristics including cell-matrix adhesion, colony formation, spheroid formation as well as CD133 and CD44 expression. PAH inhibited bone metastasis and osteoclastogenesis via repressing the activation of NF-κB pathway as well as (RANKL) - and cancer cell-induced osteoclastogenesis in PCa cells. These findings suggested the potential therapeutic effects of PAH on the metastasis of patients with PCa.


Assuntos
Neoplasias Ósseas/prevenção & controle , Monoterpenos/farmacologia , Proteínas de Neoplasias/metabolismo , Osteoclastos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Ligante RANK/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Humanos , Masculino , Camundongos , Metástase Neoplásica , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células RAW 264.7
16.
Biomed Pharmacother ; 144: 112257, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688081

RESUMO

Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Compostos Fitoquímicos/efeitos adversos , Fitoterapia
17.
J Mater Chem B ; 9(36): 7401-7408, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551050

RESUMO

In this paper, MPDA@hydroxyapatite nanocomposites (MPHA NCs) were prepared and applied to develop a novel reactive oxygen species (ROS)-triggered nitric oxide (NO)-enhanced photothermal therapy nanocomposite system composed of indocyanine green (ICG)/L-arginine-MPDA@HAp (AI-MPHA NCs) for displaying both NO gas therapy and photothermal osteosarcoma treatment. The nanosystem exhibited a mesoporous and core-shell structure and high ICG loading efficiency (about 90%). Under near infrared (NIR) irradiation, the AI-MPHA NCs could not only produce heat but also generate reactive oxygen species (ROS), inducing the catalysis of L-Arg to obtain NO. Under NIR irradiation, the AI-MPHA NCs achieved osteosarcoma ablation by a synergistic combination of photothermal therapy and NO-gas therapy. Additionally, the cell viability of MG-63 cells decreased to 23.6% (co-incubated with AI-MPHA NCs) under irradiation with a power density at 1.0 W cm-2 for 10 min. The study proposed a novel nano-platform for NO-enhanced photothermal therapy of osteosarcoma.


Assuntos
Durapatita/química , Indóis/química , Nanocompostos/química , Óxido Nítrico/metabolismo , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Arginina/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Verde de Indocianina/química , Raios Infravermelhos , Nanocompostos/uso terapêutico , Nanocompostos/toxicidade , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fototerapia/métodos , Porosidade
18.
J Biochem Mol Toxicol ; 35(10): e22868, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338395

RESUMO

Osteosarcoma (OS) is a primary bone neoplasm that is highly malignant. As advances in chemotherapy for the treatment of OS have stagnated, discovery of new reagents is required. Emetine is a phytochemical which can be isolated from a medicinal herb Cephaelis ipecacuanha and is traditionally used for amoebicides. Previous studies have demonstrated that emetine can possibly be repositioned for use in anticancer reagents. However, any anticancer effects and underlying mechanisms of emetine on human OS are not yet well understood. In this study, we analyzed the anticancer effects and involved cellular mechanisms after treatment with emetine to U2OS human OS cells. Emetine significantly reduced both the viability and proliferation, and induced apoptosis via activation of caspase-3 and caspase-7 in U2OS cells. Emetine effectively inhibited the migration and invasion of U2OS cells. Gelatinase activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were reduced by emetine. MMP-9 was transcriptionally inhibited, while MMP-2 was posttranscriptionally repressed, via the reduced expression of membrane-type I-matrix metalloproteinase (MT1-MMP). p38, which is closely related with induction of apoptosis, was stimulated by emetine. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and ß-catenin, which are linked with expression of MMPs, were downregulated. Emetine exerted anticancer effects on MG63 human OS cells as well. Taken together, our study demonstrated the anticancer and antimetastatic potential of emetine in treating human OS for the first time. It is expected that emetine may be a promising drug candidate to be repositioned for chemotherapy of OS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Cephaelis/química , Emetina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteossarcoma/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteossarcoma/patologia
19.
Ann N Y Acad Sci ; 1500(1): 34-47, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960434

RESUMO

Salvia clandestina L. is a wild perennial species present in the Salento area of Italy. Here, we examined the in vitro effects of an aqueous extract of S. clandestina L. on the MG-63 osteosarcoma cell line. The extract reduced osteosarcoma cell viability mainly by way of apoptosis, as we observed (1) upregulation of gene and protein expression of p53, cyclin-dependent kinase inhibitors p21WAF1 and p27Kip1 , and proapoptotic BAX; (2) activation of caspases; and (3) induction of a sub-G1 peak in the cell cycle. The mitogen-activated protein kinases (MAPKs) JNK1/2 and p38 are activated and involved in the intracellular effects of the S. clandestina extract, as preincubation with the JNK1/2 inhibitor SP600125 or the p38 inhibitor SB203580 significantly decreased S. clandestina extract-induced cytotoxicity and inhibited increase in p53, p21WAF1 , p27Kip1 , and BAX. SP600125 also inhibited mRNA levels for all the aforementioned proteins, while SB203580 only affected p53 mRNA. Furthermore, S. clandestina extract treatment counteracted epithelial-to-mesenchymal transition, inhibited cell migration, and decreased the expression and activity of matrix metalloproteinase MMP2. In addition, S. clandestina extract enhanced the cytotoxic activity of cisplatin on MG-63 cells through downregulation of the Akt/PKB protein kinase. We conclude that S. clandestina extract may be a novel agent for osteosarcoma treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Salvia/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Metaloproteinases da Matriz , Modelos Biológicos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA