Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319425

RESUMO

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Assuntos
Nanopartículas , Ocimum basilicum , Ocimum basilicum/metabolismo , Metabolismo Secundário , Proteção de Cultivos , Antioxidantes/metabolismo , Estresse Salino , Plântula , Prolina/metabolismo , Solo , Expressão Gênica
2.
Fish Shellfish Immunol ; 131: 1006-1018, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379445

RESUMO

Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-ß and up-regulation of IL-1ß, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κß (NF-κß), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.


Assuntos
Ciclídeos , Ocimum basilicum , Óleos Voláteis , Thymus (Planta) , Animais , Antioxidantes/metabolismo , Ocimum basilicum/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Óleos Voláteis/toxicidade , Óleos Voláteis/metabolismo , Citocinas/genética , Suplementos Nutricionais/análise , Dieta/veterinária , Biomarcadores/metabolismo , Ração Animal/análise
3.
Fish Shellfish Immunol ; 128: 425-435, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985625

RESUMO

Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1ß, TGF-ß, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanocompostos , Ocimum basilicum , Albuminas/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Aditivos Alimentares , Expressão Gênica , Glucose/metabolismo , Glutationa Peroxidase/metabolismo , Hormônio do Crescimento , Rim Cefálico/metabolismo , Interleucina-10/metabolismo , Malondialdeído/metabolismo , Muramidase/metabolismo , Óxido Nítrico/metabolismo , Ocimum basilicum/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566151

RESUMO

Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Hesperidina , Ocimum basilicum , Ocimum , Células 3T3-L1 , Animais , Biomarcadores/metabolismo , Caspase 3 , Diabetes Mellitus Experimental/metabolismo , Glucose/efeitos adversos , Hesperidina/farmacologia , Lipídeos , Camundongos , NF-kappa B/metabolismo , Ocimum basilicum/metabolismo , PPAR gama/metabolismo , RNA Mensageiro , Ratos , Proteína X Associada a bcl-2
5.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 94-107, ene. 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1372487

RESUMO

Basil (Ocimum basilicumL.) is a medicinal species used in several areas, such as food, medicines and cosmetics, and the understanding of its physiological behavior under environmental conditions is of paramount importance for the improvement of cultivation methods. The objective of this study was to evaluate the influence of different water availability under physiological, biochemical and metabolic characteristics, in three distinct genotypes: 'Alfavaca basilicão', 'Gennaro de menta' and 'Grecco à palla', during two different phenological stages (vegetative and reproductive). It was found that the water deficit promotes physiological changes to tolerate water stress, and the studied genotypes have different routes to achieve this physiological tolerance, which culminates in a distinct accumulation of metabolites in plants, and can be considered interesting if the final product is the production of essential oils.


La albahaca (Ocimum basilicum L.) es una planta medicinal utilizada en varias áreas: alimenticia, medicinal e industria cosmética; es de suma importancia el entendimiento de su comportamiento fisiológico bajo diferentes condiciones ambientales con el fin de mejorar los procesos del cultivo. El objetivo de este estudio fue evaluar la influencia de diferentes disponibilidades hídricas en las características fisiológicas, bioquímicas y metabólicas en tres genotipos de albahaca: "Alfavaca basilicão", "Gennaro de menta" y "Grecco à palla" durante dos etapas fenológicas (vegetativa y reproductiva). Fue encontrado que el déficit hídrico promueve cambios fisiológicos con el fin de tolerar el estrés hídrico. Los genotipos estudiados presentaron diferentes rutas para alcanzar esta tolerancia fisiológica, la cual culmina con distintas acumulaciones de metabolitos en las plantas, y puede ser considerado interesante si el producto final es la producción de aceites esenciales.


Assuntos
Plantas Medicinais/metabolismo , Óleos Voláteis/metabolismo , Ocimum basilicum/metabolismo , Plantas Medicinais/fisiologia , Água/metabolismo , Ocimum basilicum/fisiologia , Umidade do Solo
6.
Biomed Chromatogr ; 35(11): e5196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115393

RESUMO

In this work we developed a rapid and straightforward technique in which biosynthesized silver nanoparticles (Ag-NPs) were coated on a porous membrane utilizing electrical potential to extract perchlorate from seafood samples. The biosynthesized Ag-NPs were well characterized using UV-Vis. spectrophotometry, X-ray diffraction, and scanning electron microscopy. After extraction, analyses were performed using ion chromatography. The Ag-NP-coated porous polypropylene membrane shows higher extraction efficiency due to the high electrical conductivity of the Ag-NPs. The performance of this efficient technique was compared with those previously reported in the literature. The extraction variables that affect extraction of the target analyte and influence percentage recovery, such as pH of the sample solution, extraction time, and applied voltage, were investigated and optimized. The results demonstrated optimum conditions to achieve low detection limits [LODs (limits of detection)]: sample solution (pH = 6), short extraction time (10 min), and applied voltage (5 V). The developed method shows excellent linearity for perchlorate ion in the range from 0.001 to 350 µg L-1 with a coefficient of determination (r2 ) of 0.9991. The detection limit (LODs) and quantification limits (limits of quantification) were found to be 0.04 and 0.1225 µg kg-1 , respectively. The mean recovery percentages for three replicates of 10 different spiked fish samples by 3 µg g-1 of perchlorate were between 92.2 and 106.2%, with an observed relative standard deviation in the range of 0.8-3.7%. The proposed method is rapid, sensitive, inexpensive, environmentally friendly, and highly effective in extracting perchlorate from different seafood samples.


Assuntos
Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Percloratos , Alimentos Marinhos/análise , Prata/química , Animais , Cromatografia por Troca Iônica , Peixes , Limite de Detecção , Modelos Lineares , Ocimum basilicum/metabolismo , Percloratos/análise , Percloratos/isolamento & purificação , Extratos Vegetais/metabolismo , Reprodutibilidade dos Testes , Prata/metabolismo
7.
J Sci Food Agric ; 101(15): 6320-6330, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33966275

RESUMO

BACKGROUND: Aromatic herbs are an important source of bioactive compounds. Different cultivation systems should give each plant a specific amount of those compounds, which should be of a particular quality. In this study, the effects of three cultivation systems (indoor, greenhouse, and organic field) on the composition of bioactive compounds in parsley (Petroselinum crispum cv. 'Flat Leaf'), green basil (Ocimum basilicum var. minimum cv. 'Greek'), and purple basil (Ocimum basilicum cv. 'Red Rubin') were evaluated. RESULTS: ß-Carotene and lutein were the carotenoids with the highest concentration in the three plants in all the cultivation systems. Overall, parsley proved to be a source of flavonoids. The major phenolic compound found in basil plants was rosmarinic acid, whereas most anthocyanins were derived from cyanidin aglycone. Among the three plants studied, the highest vitamin C content was found in parsley from the field. This was 2.6 and 5.4 times higher than the indoor and greenhouse cultivation, respectively. CONCLUSION: The results suggest that different cultivation systems influence and modulate the concentration of bioactive compounds in plants differently, varying according to their class, and that, above all, an indoor system is an effective cultivation system for the production of bioactive compounds. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Ocimum basilicum/química , Petroselinum/crescimento & desenvolvimento , Extratos Vegetais/química , Produção Agrícola/instrumentação , Flavonoides/análise , Flavonoides/metabolismo , Luteína/análise , Luteína/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Petroselinum/química , Petroselinum/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , beta Caroteno/análise , beta Caroteno/metabolismo
8.
Food Chem ; 359: 129940, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957334

RESUMO

Nowadays, as consumers tend to avoid foods containing synthetic preservatives, technologically processed plant extracts can be a good alternative to these preservatives. In this study, previously obtained basil essential oil microcapsules (BEOM) were added to mayonnaise in order to produce a microbiologically safe product with improved physicochemical properties. Mayonnaises were prepared with 0%, 0.3%, 0.6%, and 0.9% BEOM replacement of the total oil content, called Mayo-Control, Mayo-0.3% BEOM, Mayo-0.6% BEOM, and Mayo-0.9% BEOM, respectively. Additionally, Mayo-SP containing ethylene diamine tetra-acetic acid and potassium sorbate was prepared. The enriched mayonnaises displayed better antimicrobial activity against Escherichia coli than Mayo-SP and Mayo-Control. Mayo-SP showed the best antimicrobial activity against Salmonella Typhimurium, followed by Mayo-0.9% BEOM. At the end of storage, Mayo-0.9% BEOM had the highest apparent viscosity, G', and G'' values due to its high content of gum molecules. Trans-2-heptanal, an oxidation product, was not identified in the enriched mayonnaises or Mayo-SP. Finally, BEOM were efficient in providing microbial safety of mayonnaise and also improved the product's oxidative stability, viscosity, and aroma.


Assuntos
Condimentos , Escherichia coli/efeitos dos fármacos , Ocimum basilicum/metabolismo , Óleos de Plantas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Manipulação de Alimentos , Testes de Sensibilidade Microbiana , Ocimum , Oxirredução
9.
Food Chem ; 342: 128358, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33092914

RESUMO

An increase in the content of secondary metabolites in herbal plants is desirable due to their therapeutic and nutraceutical properties. Therefore, the effects of foliar spray of 100 mg/L or 500 mg/L of chitosan lactate (ChL) on the accumulation of selected phenolics and physiological parameters of basil and lemon balm were investigated. In basil, the concentration of rosmarinic acid (RA) increased after application of 100 mg/L of ChL. In turn, in lemon balm both ChL concentrations increased the accumulation of RA and anthocyanins, while the level of total phenolic compounds (TPC) was elevated only at the dose of 100 mg/L of ChL. Elicitation of basil with 500 mg/L of ChL increased the shoot biomass. Therefore, such an elicitor as ChL can enhance the accumulation of valuable phytochemicals in Lamiaceae species. This simple and non-laborious method can be used for elicitation of herbal plants in production of functional food.


Assuntos
Lactatos/farmacologia , Melissa/efeitos dos fármacos , Melissa/metabolismo , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/metabolismo , Compostos Fitoquímicos/metabolismo , Relação Dose-Resposta a Droga
10.
Recent Pat Food Nutr Agric ; 12(1): 73-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32525790

RESUMO

BACKGROUND: Selenium (Se) is a crucial component of selenoaminoacids and selenoproteins. Therefore, Se-enriched agricultural products can reduce health complications induced by Se deficiency. OBJECTIVE: This research was carried out to investigate the effects of Se bio-enrichment on Basil grown in calcareous and non-calcareous soil systems and also to evaluate the changes in Se concentration in the soil after harvesting. METHODS: The experiment executed in two calcareous and one non-calcareous soil systems, and different Se application methods (control, soil application, seed inoculation, foliar application, and soil + foliar application) were administered. Selenobacteria, a plant growth-promoting rhizobacteria (PGPR), derived from the soil was used as a biofertilizer, compared to the other Se sources. RESULTS: The results showed that both soil types and the methods of Se application had significant effects (P ˂ 0.01) on root and shoot dry weights and concentrations of P, K, Zn, Fe, and Se in both of the root and shoot. Shoot dry weight of plants treated with foliar Se was maximum in the calcareous soil. Compared to the control treatment, foliar application of Se increased shoot Se content in both calcareous and non-calcareous soils by 242% and 204%, respectively. Furthermore, the increase in shoot Se concentration in calcareous soil induced by Se application increased the concentration of other nutrients in the shoot and root. Plant growth parameters and concentrations of nutrients were significantly increased by using selenobacter inoculum. CONCLUSION: The application of Se-containing compounds can improve vegetable quality. Considering the daily requirement of the human body for minerals and nutrients, enriching basil with Se can play an important role in community health. Moreover, some patents have reported the effectiveness of endophyte bacteria.


Assuntos
Ocimum basilicum/química , Selênio/análise , Solo/química , Produção Agrícola , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Selênio/metabolismo , Compostos de Selênio/análise , Compostos de Selênio/metabolismo
11.
DNA Res ; 27(5)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340318

RESUMO

Sweet basil, Ocimum basilicum L., is a well-known culinary herb grown worldwide, but its uses go beyond the kitchen to traditional medicine, cosmetics and gardening. To date, the lack of an available reference genome has limited the utilization of advanced molecular breeding methods. We present a draft version of the sweet basil genome of the cultivar 'Perrie', a fresh-cut Genovese-type basil. Genome sequencing showed basil to be a tetraploid organism with a genome size of 2.13 Gbp, assembled in 12,212 scaffolds, with > 90% of the assembly being composed of 107 scaffolds. About 76% of the genome is composed of repetitive elements, with the majority being long-terminal repeats. We constructed and annotated 62,067 protein-coding genes and determined their expression in different plant tissues. We analysed the currently known phenylpropanoid volatiles biosynthesis genes. We demonstrated the necessity of the reference genome for a comprehensive understanding of this important pathway in the context of tetraploidy and gene redundancy. A complete reference genome is essential to overcome this redundancy and to avoid off-targeting when designing a CRISPR: Cas9-based genome editing research. This work bears promise for developing fast and accurate breeding tools to provide better cultivars for farmers and improved products for consumers.


Assuntos
Vias Biossintéticas , Genoma de Planta , Ocimum basilicum/genética , Análise de Sequência de DNA , Compostos Alílicos/metabolismo , Mapeamento Cromossômico , Embaralhamento de DNA , Eugenol/metabolismo , Edição de Genes , Ocimum basilicum/enzimologia , Ocimum basilicum/metabolismo , Fenóis/metabolismo , Filogenia , Tetraploidia
12.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096885

RESUMO

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Assuntos
Antioxidantes/metabolismo , Ocimum basilicum/química , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Ocimum basilicum/metabolismo , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Tailândia
13.
Ecotoxicol Environ Saf ; 206: 111396, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039852

RESUMO

Salinity is a key worldwide ecological restriction to sustainable crop production and food security. Various methods were used for inducing salinity tolerance including biotechnological approaches or application of stress tolerance-inducing substances. Silicon supplementation has a decisive role in alleviating of salinity injury, however, the definite mechanisms behind stay scantily understood, and must be examined. The imperative roles of sodium metasilicate (Si, 100 ppm) application methods (foliar spraying at 100 mg/l; soil additive at 100 mg/kg soil; foliar spraying at 100 mg/l plus soil additive at 100 mg/kg soil), in improving growth and essential oil yield, maintaining water status, activating antioxidant system, and keeping ion homeostasis of salt affected-sweet basil (6000 mg NaCl/kg soil) were studied. Salinity induced a notable increase in oxidative biomarkers, coupled with higher osmolyte concentration and osmotic potential (OP) values, as well as increased superoxide dismutase and peroxidase activities. Alternatively, sweet basil growth, essential oil yield, and catalase activity were reduced under salinity. Furthermore, salinity aggravated ion imbalance, decreased photosynthetic pigment and disrupted the plants' water status. Silicon application drastically increased osmolyte accumulation associated with sustained water status, increased OP, and improved osmotic adjustment (OA) capacity. Additionally, Si application enhanced antioxidant aptitude associated with decreased oxidative biomarkers and improved growth, photosynthetic pigment, and essential oil yield. Greater outcomes were achieved with the foliar spraying method, compared with other application methods. Salinity stress evoked modification in protein assimilation capacity and possibly will withdraw protein biosynthesis and reduce total protein band number; however, Si application may adjust the expression of salinity inducible proteins. Foliar spraying of Si with or without soil additive accelerates the expression of peroxidase isozyme over salinized or control plants. Collectively, Si foliar spraying alleviated salinity-related injuries on sweet basil by maintaining water status, increasing osmolyte assimilation, improving OA, enhancing redox homeostasis, and antioxidant capacity.


Assuntos
Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Ocimum basilicum/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Silicatos/farmacologia , Água/metabolismo , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Oxirredução , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Solo/química , Superóxido Dismutase/metabolismo
14.
J Agric Food Chem ; 68(27): 7132-7142, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520552

RESUMO

In view of the common use of the herb basil (Ocimum basilicum) in nutrition and in phytomedicine, the contents of its leaves are of obvious interest. In extracts of fresh yellowish-green basil leaves, phyllobilins (PBs), which are bilin-type catabolites of chlorophyll (Chl), were detected using high-performance liquid chromatography (HPLC). Two such PBs, provisionally named Ob-nonfluorescent chlorophyll catabolite (NCC)-40 and Ob-YCC-45, exhibited previously unknown structures that were delineated by a thorough spectroscopic characterization. When basil leaves were infested with aphids or thrips or underwent fungal infections, areas with chlorosis were observed. HPLC analyses of the infested parts of leaves compared to those of the healthy parts showed a significant accumulation of PBs in the infested areas, demonstrating that the senescence-associated pheophorbide a oxygenase/phyllobilin (PAO/PB) pathway is activated by herbivore feeding and fungal infection.


Assuntos
Clorofila/metabolismo , Ocimum basilicum/metabolismo , Ocimum basilicum/parasitologia , Animais , Afídeos/fisiologia , Senescência Celular , Clorofila/química , Comportamento Alimentar , Herbivoria/fisiologia , Ocimum basilicum/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Tisanópteros/fisiologia
15.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481510

RESUMO

One of the major factors limiting the production of medicinal plants in arid and semi-arid areas is water deficit or drought stress. One-third of the land in the world is arid and semi-arid and is inhabited by nearly 4 × 108 people. Ocimum basilicum (sweet basil) is a valuable medicinal plant that is sensitive to water deficit, and water shortage negatively affects sweet basil yield and quality. Water availability in the root zone of basil could ameliorate the negative effects of water shortage. To the best of our knowledge, although the effects of hydrophilic polymers (HPs) have been studied in different agricultural crops, the effects of HP application in medicinal plants have not been previously investigated. This investigation was conducted to explore the effects on water use efficiency when using Stockosorb® (STS) and psyllium seed mucilage (PSM) as hydrophilic polymers (HPs) and the effects of these HPs on essential oil quality, quantity, and yield. The research was set up in a factorial experiment on the basis of completely randomized block design with three replications. We used two HPs, STS (industrial) and PSM (herbal), with two methods of application (mixed with soil, mixed with soil + root) at four concentrations (0%, 0.1%, 0.2%, and 0.3% (w/w)). Results showed that the STS and PSM significantly increased the dry herb yield (both shoot and root) in comparison to the control, and the improving effect was higher when these HPs were mixed with soil + root. The highest dry herb yield (6.74 and 3.68 g/plant for shoot and root, respectively) was detected in the PSM at 0.1% mixed with soil + root. There was not any significant difference in dry herb yield among PSM (0.1%), PSM (0.2%), and STS (0.2%) when mixed with soil + root. Soil application of PSM and soil + root application of STS at a concentration of 0.3% increased the Essential Oil (EO) content almost three-fold in comparison to the control (0.5% and 0.52% to 0.18% v/w, respectively). The maximum essential oil yield was recorded in plants treated with STS (0.2% in) or PSM (0.1%) by soil + root application (0.21 and 0.19 mL/plant, respectively). PSM at concentrations of 0.1% and 0.2% (mixed with soil + root) showed the highest water use efficiency (1.91 and 1.82 g dry weight (DW)/L H2O, respectively). STS mixed with soil also significantly improved water use efficiency (WUE) in comparison to the control. The application of these HPs improved the quality of sweet basil essential oil by increasing the linalool and decreasing the eugenol, epi-α-cadinol, and trans-α-bergamotene content.


Assuntos
Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Mucilagem Vegetal/farmacologia , Polímeros/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Psyllium/farmacologia , Água/metabolismo
16.
PLoS One ; 14(12): e0226559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31841559

RESUMO

Iodine biofortification has been gaining interest in recent years as a sustainable and innovative approach to eradicate iodine deficiency disorders. Studying the impact of iodine biofortification on plant phenotype, biochemical and physiological parameters is crucial to leverage the expertise and best practices for the agro-food industry and human health. The aim of this study was to evaluate iodine biofortification on the main quantitative and qualitative traits of basil (Ocimum basilicum L.) plants cultivated both in open field and in growth chamber. The impact of KI and KIO3 treatments was evaluated on biomass production, as well as on the synthesis of phenolic compounds, especially rosmarinic acid and other caffeic acid derivatives, and on the essential oil (EO) composition. These compounds are typically accumulated in basil leaves and strongly contribute to the plant nutraceutical value and aroma. In open field, the use of increasing concentrations of both iodine salts gradually enhanced iodine accumulation in leaves, also determining an increase of the antioxidant power, total phenolics, rosmarinic acid and cinnamic acid accumulation. The composition of EO was only slightly affected by the treatments, as all the samples were characterized by a linalool chemotype and a minor alteration in their relative content was observed. A growth chamber experiment was performed to test EO variation in controlled conditions, broadening the range of iodine concentrations. In this case, plant chemotype was significantly affected by the treatments and large EO variability was observed, suggesting that iodine form and concentration can potentially influence the EO composition but that in open field this effect is overcome by environmental factors.


Assuntos
Biofortificação/métodos , Iodo/farmacologia , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Fenóis/metabolismo , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/metabolismo , Agricultura/métodos , Biomassa , Cinamatos/análise , Cinamatos/metabolismo , Deficiências Nutricionais/prevenção & controle , Depsídeos/análise , Depsídeos/metabolismo , Ambiente Controlado , Humanos , Iodo/análise , Iodo/deficiência , Ocimum basilicum/química , Óleos Voláteis/análise , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Ácido Rosmarínico
17.
J Sci Food Agric ; 99(12): 5601-5605, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31149731

RESUMO

BACKGROUND: Microgreens (i.e. tender immature greens) are a popular alternative to sprouts (i.e. germinating seeds) because of their higher content of vitamins, carotenoids and phenols, as well as their lower content of nitrates. Their nutritional value can be improved by biofortification, which increases micronutrient levels during plant growth. Because selenium (Se) plays a significant role in antioxidant defense, biofortification with Se is a good way of improving the nutritional quality of sprouts and microgreens. The present study investigated the production of Se-fortified microgreens from Se-enriched seeds of sweet basil (Ocimum basilicum L.). These microgreens could be used as new beneficial dietary supplements. RESULTS: Basil plants were grown in a nutrient solution, containing 0 (control), 4 or 8 mg Se L-1 as sodium selenate, to full maturity. Seeds accumulated a high amount of Se and were then used to produce microgreens. The germination index was higher in the seeds from Se-treated plants and the microgreens were enriched in Se. The antioxidant capacity of Se-fortified microgreens was higher compared to the control. CONCLUSION: The production of microgreens from Se-enriched seeds could comprise a good system for obtaining microgreens with a high nutritional value. Basil plants treated with Se could be used to produce both Se-fortified leaves and microgreens. © 2019 Society of Chemical Industry.


Assuntos
Ocimum basilicum/química , Selênio/análise , Antioxidantes/análise , Antioxidantes/metabolismo , Biofortificação , Fertilizantes/análise , Alimentos Fortificados/análise , Germinação , Valor Nutritivo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Selênio/metabolismo
18.
Mol Biol Rep ; 46(3): 2979-2995, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066002

RESUMO

MicroRNAs (miRNAs) are conserved small non coding RNAs, which are typically 22-24 nucleotides long and play an important role in post transcription regulation andin various biological processes in both animals and plants. Ocimum basilicum is an important medicinal plant having different bioactive compounds eugenol and essential oils that possess numerous therapeutic properties. However, only a few miRNAs of Ocimum basilicum and its function have been studied till date. The present study focusses on the identification of miRNA from expressed sequenced tags by carrying out computational approaches based on the homology search method. A total of 10 potential miRNAs with 8 different families were predicted in O.basilicum. Furthermore, the psRNA target server was used to predict cross kingdom target genes on human transcriptome for identification ofpotential miRNAs. Eight miRNA families were found to modulate the 87 human target genes which were associated with RAS/MAPK signalling cascade, cardiomyopathy, HIV, breast cancer, lung cancer, Alzheimer's diseases and several neurological disorders. Moreover, O.basilicum miRNAs regulate the key human target genes having significance in various diseases and important biological networks with 10 hub nodes interactions. Thus this study gives the pave for further studies to explore the potential of miRNA mediated cross kingdom regulation and treatment of various diseases including cancer.


Assuntos
Biologia Computacional/métodos , Ocimum basilicum/genética , Animais , Sequência de Bases , Sequência Conservada , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas/genética , Humanos , MicroRNAs/genética , Anotação de Sequência Molecular , Ocimum basilicum/metabolismo , Filogenia , RNA de Plantas/genética , Transcriptoma
19.
J Agric Food Chem ; 67(7): 1847-1859, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681331

RESUMO

Ocimum basilicum L. (Purple basil) is a source of biologically active antioxidant compounds, particularly phenolic acids and anthocyanins. In this study, we have developed a valuable protocol for the establishment of in vitro callus cultures of O. basilicum and culture conditions for the enhanced production of distinct classes of phenylpropanoid metabolites such as hydroxycinnamic acid derivatives (caffeic acid, chicoric acid, rosmarinic acid) and anthocyanins (cyanidin and peonidin). Callus cultures were established by culturing leaf explants on Murashige and Skoog medium augmented with different concentrations of plant growth regulators (PGRs) [thidiazuron (TDZ), α-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP)] either alone or in combination with 1.0 mg/L NAA. Among all the above-mentioned PGRs, NAA at 2.5 mg/L led to the highest biomass accumulation (23.2 g/L DW), along with total phenolic (TPP; 210.7 mg/L) and flavonoid (TFP; 196.4 mg/L) production, respectively. HPLC analysis confirmed the differential accumulation of phenolic acid [caffeic acid (44.67 mg/g DW), rosmarinic acid (52.22 mg/g DW), and chicoric acid (43.89 mg/g DW)] and anthocyanins [cyanidin (16.39 mg/g DW) and peonidin (10.77 mg/g DW)] as a function of the PGRs treatment. The highest in vitro antioxidant activity was determined with the ORAC assay as compared to the FRAP assay, suggesting the prominence of the HAT over the ET-based mechanism for the antioxidant action of callus extracts. Furthermore, in vivo results illustrated the protective action of the callus extract to limit the deleterious effects of UV-induced oxidative stress, ROS/RNS production, and membrane integrity in yeast cell culture. Altogether, these results clearly demonstrated the great potential of in vitro callus of O. basilicum as a source of human health-promoting antioxidant phytochemicals.


Assuntos
Antocianinas/biossíntese , Antioxidantes/farmacologia , Ácidos Cumáricos/metabolismo , Ocimum basilicum/metabolismo , Protetores contra Radiação/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Fenóis/metabolismo , Fitoterapia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta
20.
J Photochem Photobiol B ; 190: 172-178, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30268421

RESUMO

Ocimum basilicum is a medicinal plant with multiple health benefits including cardiovascular, cancer and diabetics. In the present study, the influences of light emitting diodes (LEDs) were investigated on the accumulation of biologically active ingredients in callus cultures of Ocimum basilicum. Among the various tested treatments optimum levels of Total phenolic content (TPC) was noted in callus culture grown under blue lights as compared to control, while maximum accumulation of Total flavonoid content (TFC) was noted in callus culture grown under red light as compared to control. HPLC analyses showed that highest concentrations of Rosmarinic acid (96.0 mg/g DW) and Eugenol (0.273 mg/g DW) were accumulated in blue light which was 2.46 and 2.25 times greater than control (39.0 mg/g DW, 0.171 mg/g DW), respectively. Chicoric acid (81.40 mg/g DW) optimum accumulation was noted in callus grown under the continuous white light, which was almost 4.52 times greater than control. Anthocyanins content were also analyzed, the highest amount of Peonidin (0.127 mg/g DW) and cyanidin (0.1216 mg/g DW) were found in callus culture grown under red light. These findings suggest that application of LED's is a promising strategy for enhancing production of biologically active ingredients in callus cultures Ocimum basilicum.


Assuntos
Luz , Melatonina/farmacologia , Ocimum basilicum/metabolismo , Compostos Fitoquímicos/biossíntese , Antocianinas/análise , Antioxidantes/metabolismo , Biomassa , Técnicas de Cultura de Células , Cinamatos/análise , Cor , Depsídeos/análise , Flavonoides/análise , Ocimum basilicum/citologia , Fenóis/análise , Compostos Fitoquímicos/efeitos da radiação , Plantas Medicinais/metabolismo , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA