RESUMO
Aroma has an important influence on the aroma quality of chicken meat. This study aimed to identify the characteristic aroma substances in chicken meat and elucidate their metabolic mechanisms. Using gas chromatography-olfactometry and odor activity values, we identified nonanal, octanal, and dimethyl tetrasulfide as the basic characteristic aroma compounds in chicken meat, present in several breeds. Hexanal, 1-octen-3-ol, (E)-2-nonenal, heptanal, and (E,E)-2,4-decadienal were breed-specific aroma compounds found in native Chinese chickens but not in the meat of white-feathered broilers. Metabolomics analysis showed that L-glutamine was an important metabolic marker of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol. Exogenous supplementation experiments found that L-glutamine increased the content of D-glucosamine-6-P and induced the degradation of L-proline, L-arginine, and L-lysine to enhance the Maillard reaction and promote the formation of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol, thus improving the aroma profile of chicken meat.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes/análise , Olfatometria , Galinhas , Olfato , Glutamina , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa , CarneRESUMO
Fermented tea (FT) using a single Eurotium cristatum strain can produce a pleasant fungal-flowery aroma, which is similar to the composite aroma characteristic of minty, flowery, and woody aromas, but its molecular basis is not yet clear. In this study, solvent-assisted flavor evaporation and gas chromatography-mass spectrometry/olfactometry were applied to isolate and identify volatiles from the FT by E. cristatum. The application of an aroma extract dilution analysis screened out 43 aroma-active compounds. Quantification revealed that there were 11 odorants with high odor threshold concentrations. Recombination and omission tests revealed that nonanal, methyl salicylate, decanoic acid, 4-methoxybenzaldehyde, α-terpineol, phenylacetaldehyde, and coumarin were the major odorants in the FT. Addition tests further verified that methyl salicylate, 4-methoxybenzaldehyde, and coumarin were the key odorants for fungal-flowery aroma, each corresponding to minty, woody, and flowery aromas, respectively. 4-Methoxybenzaldehyde and coumarin were newly found odorants for fungal-flowery aroma in FT, and 4-methoxybenzaldehyde had not been reported as a tea volatile compound before. This finding may guide future industrial production optimization of FT with improved flavor.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Olfato , Aromatizantes/análise , Compostos Orgânicos Voláteis/análise , Olfatometria , Cumarínicos/análise , CháRESUMO
BACKGROUND: White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS: A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION: Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-ß-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while ß-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Olfatometria/métodos , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química , Chá/químicaRESUMO
Fu brick tea (FBT) is popular for its unique 'fungal flower' aroma, however, its key odor-active compounds are essentially unknown. In this study, the odor-active compounds of "stale-fungal" aroma (CJX), "fresh-fungal" aroma (QJX), and "fermentation-fungal" aroma (FJX) types FBT were extracted and examined by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatographyolfactometry (GC-O). A total of 43 volatile and 38 odor-active compounds were identified by these methods. Among them, the content of dihydroactindiolide (4596-13189 µg/L), (E)-linalool oxide (2863-6627 µg/L), and benzyl alcohol (4992-6859 µg/L) were highest. Aroma recombination experiments further verified that these odor-active compounds could be simulated the overall aroma profile of FBT successfully. Furthermore, omission experiments confirmed that 15, 20, and 15 key odor-active compounds in CJX, QJX, and FJX FBT, respectively. This study will provide a theoretical basis for comprehensively understanding the formation of characteristic aromas in FBT.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Chá , Compostos Orgânicos Voláteis/análise , OlfatometriaRESUMO
Basidiomycota are natural sources of aroma compounds. When grown in submerged cultures, the fungus Laetiporus montanus (LMO) forms a spicy and meat-like aroma. It thus represents an interesting candidate for the production of natural savory flavors. To identify the key aroma compounds of LMO grown submerged in malt extract peptone medium, the volatiles were isolated by means of automated solvent assisted flavor evaporation (aSAFE). An aroma extract dilution analysis was performed by means of gas chromatography-olfactometry coupled with a flame ionization detector (GC-FID-O). In the aSAFE extract of LMO, 24 aroma-active compounds were detected. 5-Butyl-2(5H)-furanone (FD 4096), perceived as coconut-like, was determined as the compound with the highest FD factor. (E,E)-2,4-Decadienal, (E,Z)-2,4-decadienal, and sotolon were identified as responsible key compounds for the spicy odor of the submerged cultures. Moreover, supplementation of the cultures of LMO, Laetiporus sulphureus, and Laetiporus persicinus with 13C-labeled thiamine hydrochloride resulted in the formation of 2-methyl-3-(methylthio)furan (MMTF), a compound with a pronounced meaty flavor. The concentrations of MMTF were further increased to 19-27 µg L-1 by additional supplementation of the cultures with ascorbic acid. The results of this study indicate potential for the biotechnological production of a meat-like flavor by Laetiporus species.
Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Carne/análise , Odorantes/análise , Olfatometria , Extratos VegetaisRESUMO
Xinyang black tea (XYBT) is characterized by the honey sugar-like aroma which is produced during the fermentation process. However, the formation of this typical aroma is still unclear. We here performed widely targeted volatileomics analysis combined with GC-MS and detected 116 aroma active compounds (AACs) with OAV > 1. These AACs were mainly divided into terpenoids, pyrazine, volatile sulfur compounds, esters, and aldehydes. Among them, 25 significant differences AACs (SDAACs) with significant differences in fermentation processes were identified, comprising phenylacetaldehyde, dihydroactinidiolide, α-damascenone, ß-ionone, methyl salicylate, and so forth. In addition, sensory descriptions and partial least squares discriminant analysis demonstrated that phenylacetaldehyde was identified as the key volatile for the honey sugar-like aroma. We further speculated that phenylacetaldehyde responsible for the aroma of XYBT was probably produced from the degradation of L-phenylalanine and styrene. In conclusion, this study helps us better understand the components and formation mechanism of the honey sugar-like aroma of XYBT, providing new insight into improving the processing techniques for black tea quality.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Chá , Fermentação , Olfatometria/métodos , Compostos Orgânicos Voláteis/análise , AçúcaresRESUMO
Instant dark tea (IDT) was prepared by liquid-state fermentation inoculating Eurotium cristatum. The changes in the volatile compounds and characteristic aroma of IDT during fermentation were analyzed using gas chromatography-mass spectrometry by collecting fermented samples after 0, 1, 3, 5, 7, and 9 days of fermentation. Components with high odor activity (log2FD ≥ 5) were verified by gas chromatography-olfactometry. A total of 107 compounds showed dynamic changes during fermentation over 9 days, including 17 alcohols, 7 acids, 10 ketones, 11 esters, 8 aldehydes, 37 hydrocarbons, 4 phenols, and 13 other compounds. The variety of flavor compounds increased gradually with time within the early stage and achieved a maximum of 79 compounds on day 7 of fermentation. ß-Damascenone showed the highest odor activity (log2FD = 9) in the day 7 sample, followed by linalool and geraniol. These results indicate that fungal fermentation is critical to the formation of these aromas of IDT.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fermentação , Olfatometria/métodos , Compostos Orgânicos Voláteis/análise , Chá/químicaRESUMO
The aim of this study was to reveal the molecular basis of aroma changes during storage of An tea (AT). The key volatile compounds in AT were screened using SPME-GC-MS and SPE-GC-MS analytical techniques in combination with odor activity value (OAV) and flavor dilution factor (FD). The results showed that with the increase of storage time the stale and woody aromas were revealed. Esters, acids and hydrocarbons are the main types of volatile compounds in AT, and their content accounts for 52.69 %-61.29 % of the total volatile compounds. The key volatile compounds with stale and woody aromas during AT storage were obtained by OAV value and FD value, namely ketoisophorone (flavor dilution factor, FD = 64), linalool oxide C (FD = 64), 1-octen-3-ol (OAV > 1, FD = 32), 1,2-dimethoxybenzene (FD = 16), naphthalene (OAV > 1, FD = 32), 3,4-dimethoxytoluene (FD = 16), and 1,2,3-trimethoxybenzene (FD = 8). Our research provides a scientific basis and insights for the improvement of quality during the storage of dark tea.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Chá , Compostos Orgânicos Voláteis/análise , Olfatometria/métodosRESUMO
Large-leaf yellow tea (LYT) is a yellow tea product with a specific aroma characteristic and is enjoyed with increasing enthusiasm in China. However, its key odorants are still unknown. In this study, 46 odorants in the headspace and vacuum-distillate of the tea infusion were identified via aroma extract dilution analysis. Sixteen compounds were newly found in LYT infusion. They were present in the highest flavor dilution factors together with 2-ethyl-3,5-dimethylpyrazine. All odorants were quantitated to evaluate their own odor activity values (OAVs). High OAVs were found for 2-methylbutanal (malty, 210), (E,E)-2,4-heptandienal (fatty/flowery, 170), 2-methylpropanal (malty, 120) and 2,3-diethyl-5-methylpyrazine (earthy/roasty, 110). An aroma recombinate consisting of 17 odorants (all OAVs ≥ 1) in an odorless nonvolatile LYT matrix mimicked the overall aroma of the original infusion, verifying the successful characterization of key aroma components in a LYT beverage. The knowledge of key odorants obtained showed potential for simplifying industrial flavor optimization of the LYT product.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Técnicas de Diluição do Indicador , Folhas de Planta/química , Chá , Compostos Orgânicos Voláteis/análise , Aromatizantes/análise , OlfatometriaRESUMO
Steeping process is an important factor for aroma release of tea, which has rarely been investigated for the aroma changes of raw Pu-erh tea (RAPT). In addition, the comprehensive aroma characteristics identification of RAPT infusion is necessary. In this study, GC-IMS coupled with principal component analysis (PCA) was used to clarify the difference of volatile profiles during the steeping process of RAPT. Furthermore, the volatiles contained in the RAPT infusion were extracted by three pretreatment methods (HS-SPME, SBSE, and SAFE) and identified using GC-O-MS. According to the odor activity value, 28 of 66 compounds were categorized as aroma-active compounds. Aroma recombination and omission experiments showed that "fatty", "green", "fruity", and "floral" are considered to be the main aroma attributes of RAPT infusion with a strong relationship with 1-octen-3-one, 1-octen-3-ol, (E)-2-octenal, ß-ionone, linalool, etc. This study will contribute a better understanding of the mechanism of the RAPT steeping process and volatile generation.
Assuntos
Chá , Compostos Orgânicos Voláteis , Olfatometria/métodos , Chá/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/químicaRESUMO
This study was conducted to analyze volatile odor compounds and key odor-active compounds in the fish soup using fish scarp and bone. Five extraction methods, including solid-phase microextraction (SPME), dynamic headspace sampling (DHS), solvent-assisted flavor evaporation (SAFE), stir bar sorptive extraction (SBSE), liquid-liquid extraction (LLE), were compared and SPME was finally selected as the best extraction method for further study. The volatile odor compounds were analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS) techniques, and the key odor-active compounds were identified via aroma extract dilution analysis (AEDA) and relative odor activity value (r-OAV) calculation. A total of 38 volatile compounds were identified by GC-O-MS, among which 10 were declared as odor-active compounds. Whereas 39 volatile compounds were identified by GC × GC-O-MS, among which 12 were declared as odor-active compounds. The study results revealed that 1-octen-3-one, 2-pentylfuran, (E)-2-octenal, 1-octen-3-one, hexanal, 1-octen-3-ol, 6-methylhept-5-en-2-one, (E,Z)-2,6-nondienal and 2-ethyl-3,5-dimethylpyrazine were the key odor-active compounds in the fish soup.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Cetonas , Odorantes/análise , Olfatometria/métodos , Extratos Vegetais , Solventes , Compostos Orgânicos Voláteis/análiseRESUMO
Aroma extract dilution analysis was performed on volatile fractions extracted from a freshly prepared Dahongpao (DHP) tea infusion using solvent-assisted flavor evaporation, yielding 65 odor-active domains with flavor dilution factors ranging between 32 and 32,768. In addition, six aromatic substances were captured by headspace analysis. Quantitation of 54 compounds by an internal standard method and stable isotope dilution assays revealed that the concentrations of 32 odorants exceeded their respective orthonasal odor threshold values in tea infusion. The results of odor activity values (OAVs) suggested that 2-metylbutanal (malty) and γ-hexalactone (coconut-like) had the highest OAVs (248 and 154). Eight odorants including γ-hexalactone (OAV 154), methyl 2-methylbutanoate (59), phenylacetic acid (7.2), acetylpyrazine (5.7), 2-methoxyphenol (3.4), p-cresol (2.7), 2,6-diethylpyrazine (2.7), and vanillin (1.8) were newly identified as key odorants in DHP tea infusion. An aroma recombination model in a non-volatile matrix extracted from tea infusion satisfactorily mimicked the overall aroma of DHP tea infusion, thereby confirming the identification and quantitative experiments. Omission experiments verified the obvious significance of 6-methyl-5-hepten-2-one (OAV 91), 2-ethyl-3,5-dimethylpyrazine (19), 4-hydroxy-2,5-dimethylfuran-3(2H)-one (13), and acetylpyrazine (5.7) as key odorants for the special roasty and caramel-like aroma of DHP tea.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Aromatizantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfatometria , Chá , Compostos Orgânicos Voláteis/análiseRESUMO
The warmed-over flavor (WOF) in surimi gels was characterized by gas chromatography-ion mobility spectrometry, aroma extract dilution analysis, aroma recombination, and omission studies. Surimi gels with different WOF levels were prepared by different gelling temperatures, and surimi gels heated at 90, 100, and 121 °C were considered as the samples with light, strong, and medium WOF, respectively. Based on the quantification and odor activity values, 14 aldehydes, 2 ketones, 3 alcohols, 2 benzene-containing compounds, 2 N-containing compounds, 3 S-containing compounds, 3 lactones, undecanoic acid, and 4-methylphenol were recombined to build a spiked model for surimi gels with the strongest WOF, which showed the highest similarity with the original sample. Finally, a triangle test involving omission of the aroma compounds from the spiked model proved that the WOF in surimi gels was attributed to (E,E)-2,4-decadienal, heptanal, octanal, nonanal, decanal, (E)-2-nonenal, (E)-2-octenal, (E)-2-decenal, (E,E)-2,4-heptadienal, 2,3-pentanedione, 2,6-dimethylpyrazine, 2-propylpyridine, benzothiazole, 2-methoxybenzenethiol, and 2-furfurylthiol.
Assuntos
Carpas , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas , Géis , Espectrometria de Mobilidade Iônica , Cetonas/análise , Odorantes/análise , Olfatometria , Extratos Vegetais , Olfato , Compostos Orgânicos Voláteis/químicaRESUMO
Withering is a key process that affects the aroma of Keemun black tea (KBT). In this study, the aroma composition of KBT through natural withering, sun withering, and warm-air withering was analysed using gas chromatography-mass spectrometry. The results revealed significant differences in the three samples. Gas chromatography-olfactometry and aroma extract dilution analysis were performed with screening through a relative odour activity value (rOAV) > 1. In total, 11 aroma-active compounds (geraniol, (Z)-4-heptenal, 1-octen-3-ol, (E)-ß-ionone, 3-methylbutanal, linalool, ß-damascenone, (E, E)-2,4-decadienal, methional, (E, E)-2,4-nonadienal, and (E)-2-nonenal) were found to be responsible for the differences in aroma caused by different withering methods. Linalool (rOAV, 161) and geraniol (rOAV, 785) were responsible for the higher flowery and fruity aromas when sun withering was applied, whereas methional (rOAV, 124) contributed to the intense roasty aroma when warm-air withering was employed. Moreover, our results were verified by quantitative descriptive analysis and addition experiments.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análiseRESUMO
BACKGROUND: The odor and flavor produced by a complex mixture of chemical components with different amounts and thresholds constitute a unique property for food and Traditional Chinese Medicine (TCM). These compounds usually belong to mono- and sesquiterpenes, esters, lipids, and others. OBJECTIVE: This review aimed to demonstrate the extraction method and reliable technology for identifying the compounds responsible for their odor and flavor. METHODS: Existing techniques have been summarized for the analysis of taste and odor components and their characteristics, such as electronic nose (enose, EN) and electronic tongue (etongue, ET), which can separate high-quality food from low-quality and natural from artificial food in terms of unique odor and flavor. RESULTS: Gas chromatography-olfactometry mass spectrometry (GC-O-MS), a technique derived from Gas chromatography mass spectrometry (GC-MS), coupled with human sense by Olfactory Detector Ports has been successfully applied for screening of the odor-producing components for the food or Chinese medicine. CONCLUSION: This current review provides some guidelines for quality evaluation of food or Chinese medicine.
Assuntos
Medicina Tradicional Chinesa , Odorantes , Humanos , Odorantes/análise , Olfatometria/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , OlfatoRESUMO
Submerged fermentation of green tea with the basidiomycete Mycetinis scorodonius resulted in a pleasant chocolate-like and malty aroma, which could be a promising chocolate flavor alternative to current synthetic aroma mixtures in demand of consumer preferences towards healthy natural and 'clean label' ingredients. To understand the sensorial molecular base on the chocolate-like aroma formation, key aroma compounds of the fermented green tea were elucidated using a direct immersion stir bar sorptive extraction combined with gas chromatography-mass spectrometry-olfactometry (DI-SBSE-GC-MS-O) followed by semi-quantification with internal standard. Fifteen key aroma compounds were determined, the most important of which were dihydroactinidiolide (odor activity value OAV 345), isovaleraldehyde (OAV 79), and coumarin (OAV 24), which were also confirmed by a recombination study. Furthermore, effects of the fermentation parameters (medium volume, light protection, agitation rate, pH, temperature, and aeration) on the aroma profile were investigated in a lab-scale bioreactor at batch fermentation. Variation of the fermentation parameters resulted in similar sensory perception of the broth, where up-scaling in volume evoked longer growth cycles and aeration significantly boosted the concentrations yet added a green note to the overall flavor impression. All findings prove the robustness of the established fermentation process with M. scorodonius for natural chocolate-like flavor production.
Assuntos
Cacau , Chocolate , Compostos Orgânicos Voláteis , Agaricales , Fermentação , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análiseRESUMO
BACKGROUND: Floral and sweet odors are two typical characteristic aromas of Congou black tea, but their aroma-active compounds are still unclear. Characterizing the key aroma-active compounds can provide a theoretical foundation for the practical aroma quality evaluation of Congou black tea and directional processing technology of high-quality black tea with floral or sweet odors. Gas chromatography-olfactometry (GC-O) combined with odor activity value (OAV) is often used to screen key aroma-active substances, but the interaction between aroma components and their impact on the overall sensory quality is ignored. Therefore, in this study, OAV combined with variable importance in projection (VIP) and Spearman correlation analysis (SCA) were used to characterize the aroma-active components of Congou black teas with floral and sweet odors. RESULTS: Eighty-five volatiles were identified in these samples using gas chromatography-mass spectrometry (GC-MS). Twenty-three compounds were identified as potential markers for the floral and sweet odors of Congou black teas from orthogonal partial least squares discriminant analysis (OPLS-DA). Eighteen compounds were selected as candidate aroma compounds based on GC-O analysis and OAV calculations. In addition, 26 compounds were screened as crucial aroma compounds based on SCA. Finally, 19 compounds were evaluated as key aroma compounds by the comprehensive evaluation of VIP, OAV, and SCA. Terpenoids are the main active compounds that contribute to the floral odor of Congou black tea, whereas aldehydes are the key compounds for the sweet odor. CONCLUSION: The proposed method can effectively screen the aroma-active compounds and can be used for comprehensive quality control of products. © 2022 Society of Chemical Industry.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/químicaRESUMO
Volatile compounds in Chinese Zhizhonghe Wujiapi (WJP) medicinal liquor were extracted by solvent-assisted flavor evaporation extraction (SAFE) and stir bar sorptive extraction (SBSE), respectively, and identified by gas chromatography-mass spectrometry. Results showed that a total of 123 volatile compounds (i.e., 108 by SAFE, 50 by SBSE, and 34 by both) including esters, alcohols, acids, aldehydes, ketones, heterocycles, terpenes and terpenoids, alkenes, phenols, and other compounds were identified, and 67 of them were confirmed as aroma-active compounds by the application of the aroma extract dilution analysis coupled with gas chromatography-olfactometry. After making a simulated reconstitute by mixing 41 characterized aroma-active compounds (odor activity values ≥1) based on their concentrations, the aroma profile of the reconstitute showed good similarity to that of the original WJP liquor. Omission test further corroborated 34 key aroma-active compounds in the WJP liquor. The study of WJP liquor is expected to provide some insights into the characterization of special volatile components in traditional Chinese medicine liquors for the purpose of quality improvement and aroma optimization.
Assuntos
Compostos Orgânicos Voláteis , Bebidas Alcoólicas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Compostos Orgânicos Voláteis/análiseRESUMO
Coffee aroma is a complex mixture of volatile compounds. This study characterized the important aroma-active compounds associated with consumer liking in formulated coffee-flavored dairy beverages. Nine coffee-flavored dairy beverages were formulated: low fat-low coffee; medium fat-low coffee; high fat-low coffee; low fat-medium coffee; medium fat-medium coffee; high fat-medium coffee; low fat-high coffee; medium fat-high coffee; and high fat-high coffee. Regular coffee consumers, (n = 231) used a nine-point hedonic scale to rate acceptance of aroma. Volatile compounds were extracted by head space-solid phase micro-extraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) using a modified frequency (MF) approach. Fifty-two aroma-active compounds were detected. Thirty-one aroma-active compounds were considered important compounds with MF-value ≥ 50%. The total number of aroma-active compounds and their intensity were affected because of fat and coffee concentration. Partial least squares regression (PLSR) was performed to determine the relationship between aroma-active compounds and liking. PLSR analysis identified three groups of compounds regarding liking. Twenty-five compounds were associated with positive liking, for example, 2-(methylsulfanylmethyl) furan (coffee like). Sixteen compounds were negatively associated with liking, for example, 2-methoxyphenol (bacon, medicine like). Eleven detected compounds had no association with liking, for example, butane-2,3-dione (butter, fruit like). Practical Application: The result of this study may be applied to formulate coffee-flavored dairy beverages to maximize consumer acceptance and aroma-liking. This study suggested too low coffee concentration is not desirable. Too much fat affects aroma release and/or alters the characteristic coffee flavor which negatively affects consumer acceptance.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Bebidas/análise , Café , Odorantes/análise , Olfatometria , Paladar , Compostos Orgânicos Voláteis/análiseRESUMO
Citrus-white teas (CWs), which possess a balanced flavour of tea and citrus, are becoming more popular worldwide; however, their characteristic flavour and odourants received limited research. Volatile components of two types of CWs prepared from Citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai' were comprehensively investigated using a combination of stir bar sorptive extraction and gas chromatography-mass spectrometry (GC-MS). Ninety-nine crucial odourants in the CWs were quantified by applying GC-olfactometry/MS, significant differences were compared, and their odour activity values (OAVs) were calculated. Twenty-two odourants (in total 2628.09 and 1131.18 mg/kg respectively) were further confirmed as traditional CW (CW-A) and innovated CW (CW-B) characteristic flavour crucial contributors which all possessed > 1 OAVs, particularly limonene (72919 in CW-A) and trans-ß-ionone (138953 in CW-B). The unravelling of CWs aroma composition will greatly expanding our understanding of tea aroma chemistry and the potential aroma interactions will offer insights into tea blending technologies.