Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(14): 7136-7152, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37337850

RESUMO

BACKGROUND: White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS: A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION: Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-ß-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while ß-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Olfatometria/métodos , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química , Chá/química
2.
Food Res Int ; 164: 112387, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737972

RESUMO

Xinyang black tea (XYBT) is characterized by the honey sugar-like aroma which is produced during the fermentation process. However, the formation of this typical aroma is still unclear. We here performed widely targeted volatileomics analysis combined with GC-MS and detected 116 aroma active compounds (AACs) with OAV > 1. These AACs were mainly divided into terpenoids, pyrazine, volatile sulfur compounds, esters, and aldehydes. Among them, 25 significant differences AACs (SDAACs) with significant differences in fermentation processes were identified, comprising phenylacetaldehyde, dihydroactinidiolide, α-damascenone, ß-ionone, methyl salicylate, and so forth. In addition, sensory descriptions and partial least squares discriminant analysis demonstrated that phenylacetaldehyde was identified as the key volatile for the honey sugar-like aroma. We further speculated that phenylacetaldehyde responsible for the aroma of XYBT was probably produced from the degradation of L-phenylalanine and styrene. In conclusion, this study helps us better understand the components and formation mechanism of the honey sugar-like aroma of XYBT, providing new insight into improving the processing techniques for black tea quality.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Chá , Fermentação , Olfatometria/métodos , Compostos Orgânicos Voláteis/análise , Açúcares
3.
Food Chem ; 411: 135487, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669341

RESUMO

The aim of this study was to reveal the molecular basis of aroma changes during storage of An tea (AT). The key volatile compounds in AT were screened using SPME-GC-MS and SPE-GC-MS analytical techniques in combination with odor activity value (OAV) and flavor dilution factor (FD). The results showed that with the increase of storage time the stale and woody aromas were revealed. Esters, acids and hydrocarbons are the main types of volatile compounds in AT, and their content accounts for 52.69 %-61.29 % of the total volatile compounds. The key volatile compounds with stale and woody aromas during AT storage were obtained by OAV value and FD value, namely ketoisophorone (flavor dilution factor, FD = 64), linalool oxide C (FD = 64), 1-octen-3-ol (OAV > 1, FD = 32), 1,2-dimethoxybenzene (FD = 16), naphthalene (OAV > 1, FD = 32), 3,4-dimethoxytoluene (FD = 16), and 1,2,3-trimethoxybenzene (FD = 8). Our research provides a scientific basis and insights for the improvement of quality during the storage of dark tea.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Chá , Compostos Orgânicos Voláteis/análise , Olfatometria/métodos
4.
Food Chem ; 410: 135462, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669288

RESUMO

Instant dark tea (IDT) was prepared by liquid-state fermentation inoculating Eurotium cristatum. The changes in the volatile compounds and characteristic aroma of IDT during fermentation were analyzed using gas chromatography-mass spectrometry by collecting fermented samples after 0, 1, 3, 5, 7, and 9 days of fermentation. Components with high odor activity (log2FD ≥ 5) were verified by gas chromatography-olfactometry. A total of 107 compounds showed dynamic changes during fermentation over 9 days, including 17 alcohols, 7 acids, 10 ketones, 11 esters, 8 aldehydes, 37 hydrocarbons, 4 phenols, and 13 other compounds. The variety of flavor compounds increased gradually with time within the early stage and achieved a maximum of 79 compounds on day 7 of fermentation. ß-Damascenone showed the highest odor activity (log2FD = 9) in the day 7 sample, followed by linalool and geraniol. These results indicate that fungal fermentation is critical to the formation of these aromas of IDT.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fermentação , Olfatometria/métodos , Compostos Orgânicos Voláteis/análise , Chá/química
5.
J Agric Food Chem ; 70(42): 13741-13753, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36225119

RESUMO

Steeping process is an important factor for aroma release of tea, which has rarely been investigated for the aroma changes of raw Pu-erh tea (RAPT). In addition, the comprehensive aroma characteristics identification of RAPT infusion is necessary. In this study, GC-IMS coupled with principal component analysis (PCA) was used to clarify the difference of volatile profiles during the steeping process of RAPT. Furthermore, the volatiles contained in the RAPT infusion were extracted by three pretreatment methods (HS-SPME, SBSE, and SAFE) and identified using GC-O-MS. According to the odor activity value, 28 of 66 compounds were categorized as aroma-active compounds. Aroma recombination and omission experiments showed that "fatty", "green", "fruity", and "floral" are considered to be the main aroma attributes of RAPT infusion with a strong relationship with 1-octen-3-one, 1-octen-3-ol, (E)-2-octenal, ß-ionone, linalool, etc. This study will contribute a better understanding of the mechanism of the RAPT steeping process and volatile generation.


Assuntos
Chá , Compostos Orgânicos Voláteis , Olfatometria/métodos , Chá/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/química
6.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234714

RESUMO

This study was conducted to analyze volatile odor compounds and key odor-active compounds in the fish soup using fish scarp and bone. Five extraction methods, including solid-phase microextraction (SPME), dynamic headspace sampling (DHS), solvent-assisted flavor evaporation (SAFE), stir bar sorptive extraction (SBSE), liquid-liquid extraction (LLE), were compared and SPME was finally selected as the best extraction method for further study. The volatile odor compounds were analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS) techniques, and the key odor-active compounds were identified via aroma extract dilution analysis (AEDA) and relative odor activity value (r-OAV) calculation. A total of 38 volatile compounds were identified by GC-O-MS, among which 10 were declared as odor-active compounds. Whereas 39 volatile compounds were identified by GC × GC-O-MS, among which 12 were declared as odor-active compounds. The study results revealed that 1-octen-3-one, 2-pentylfuran, (E)-2-octenal, 1-octen-3-one, hexanal, 1-octen-3-ol, 6-methylhept-5-en-2-one, (E,Z)-2,6-nondienal and 2-ethyl-3,5-dimethylpyrazine were the key odor-active compounds in the fish soup.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Cetonas , Odorantes/análise , Olfatometria/métodos , Extratos Vegetais , Solventes , Compostos Orgânicos Voláteis/análise
7.
Food Chem ; 395: 133549, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35777211

RESUMO

Withering is a key process that affects the aroma of Keemun black tea (KBT). In this study, the aroma composition of KBT through natural withering, sun withering, and warm-air withering was analysed using gas chromatography-mass spectrometry. The results revealed significant differences in the three samples. Gas chromatography-olfactometry and aroma extract dilution analysis were performed with screening through a relative odour activity value (rOAV) > 1. In total, 11 aroma-active compounds (geraniol, (Z)-4-heptenal, 1-octen-3-ol, (E)-ß-ionone, 3-methylbutanal, linalool, ß-damascenone, (E, E)-2,4-decadienal, methional, (E, E)-2,4-nonadienal, and (E)-2-nonenal) were found to be responsible for the differences in aroma caused by different withering methods. Linalool (rOAV, 161) and geraniol (rOAV, 785) were responsible for the higher flowery and fruity aromas when sun withering was applied, whereas methional (rOAV, 124) contributed to the intense roasty aroma when warm-air withering was employed. Moreover, our results were verified by quantitative descriptive analysis and addition experiments.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análise
8.
Curr Pharm Des ; 28(34): 2771-2784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619255

RESUMO

BACKGROUND: The odor and flavor produced by a complex mixture of chemical components with different amounts and thresholds constitute a unique property for food and Traditional Chinese Medicine (TCM). These compounds usually belong to mono- and sesquiterpenes, esters, lipids, and others. OBJECTIVE: This review aimed to demonstrate the extraction method and reliable technology for identifying the compounds responsible for their odor and flavor. METHODS: Existing techniques have been summarized for the analysis of taste and odor components and their characteristics, such as electronic nose (enose, EN) and electronic tongue (etongue, ET), which can separate high-quality food from low-quality and natural from artificial food in terms of unique odor and flavor. RESULTS: Gas chromatography-olfactometry mass spectrometry (GC-O-MS), a technique derived from Gas chromatography mass spectrometry (GC-MS), coupled with human sense by Olfactory Detector Ports has been successfully applied for screening of the odor-producing components for the food or Chinese medicine. CONCLUSION: This current review provides some guidelines for quality evaluation of food or Chinese medicine.


Assuntos
Medicina Tradicional Chinesa , Odorantes , Humanos , Odorantes/análise , Olfatometria/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfato
9.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458700

RESUMO

Submerged fermentation of green tea with the basidiomycete Mycetinis scorodonius resulted in a pleasant chocolate-like and malty aroma, which could be a promising chocolate flavor alternative to current synthetic aroma mixtures in demand of consumer preferences towards healthy natural and 'clean label' ingredients. To understand the sensorial molecular base on the chocolate-like aroma formation, key aroma compounds of the fermented green tea were elucidated using a direct immersion stir bar sorptive extraction combined with gas chromatography-mass spectrometry-olfactometry (DI-SBSE-GC-MS-O) followed by semi-quantification with internal standard. Fifteen key aroma compounds were determined, the most important of which were dihydroactinidiolide (odor activity value OAV 345), isovaleraldehyde (OAV 79), and coumarin (OAV 24), which were also confirmed by a recombination study. Furthermore, effects of the fermentation parameters (medium volume, light protection, agitation rate, pH, temperature, and aeration) on the aroma profile were investigated in a lab-scale bioreactor at batch fermentation. Variation of the fermentation parameters resulted in similar sensory perception of the broth, where up-scaling in volume evoked longer growth cycles and aeration significantly boosted the concentrations yet added a green note to the overall flavor impression. All findings prove the robustness of the established fermentation process with M. scorodonius for natural chocolate-like flavor production.


Assuntos
Cacau , Chocolate , Compostos Orgânicos Voláteis , Agaricales , Fermentação , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análise
10.
J Sci Food Agric ; 102(12): 5399-5410, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35332546

RESUMO

BACKGROUND: Floral and sweet odors are two typical characteristic aromas of Congou black tea, but their aroma-active compounds are still unclear. Characterizing the key aroma-active compounds can provide a theoretical foundation for the practical aroma quality evaluation of Congou black tea and directional processing technology of high-quality black tea with floral or sweet odors. Gas chromatography-olfactometry (GC-O) combined with odor activity value (OAV) is often used to screen key aroma-active substances, but the interaction between aroma components and their impact on the overall sensory quality is ignored. Therefore, in this study, OAV combined with variable importance in projection (VIP) and Spearman correlation analysis (SCA) were used to characterize the aroma-active components of Congou black teas with floral and sweet odors. RESULTS: Eighty-five volatiles were identified in these samples using gas chromatography-mass spectrometry (GC-MS). Twenty-three compounds were identified as potential markers for the floral and sweet odors of Congou black teas from orthogonal partial least squares discriminant analysis (OPLS-DA). Eighteen compounds were selected as candidate aroma compounds based on GC-O analysis and OAV calculations. In addition, 26 compounds were screened as crucial aroma compounds based on SCA. Finally, 19 compounds were evaluated as key aroma compounds by the comprehensive evaluation of VIP, OAV, and SCA. Terpenoids are the main active compounds that contribute to the floral odor of Congou black tea, whereas aldehydes are the key compounds for the sweet odor. CONCLUSION: The proposed method can effectively screen the aroma-active compounds and can be used for comprehensive quality control of products. © 2022 Society of Chemical Industry.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/química
11.
J Food Sci ; 87(3): 939-956, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122437

RESUMO

Volatile compounds in Chinese Zhizhonghe Wujiapi (WJP) medicinal liquor were extracted by solvent-assisted flavor evaporation extraction (SAFE) and stir bar sorptive extraction (SBSE), respectively, and identified by gas chromatography-mass spectrometry. Results showed that a total of 123 volatile compounds (i.e., 108 by SAFE, 50 by SBSE, and 34 by both) including esters, alcohols, acids, aldehydes, ketones, heterocycles, terpenes and terpenoids, alkenes, phenols, and other compounds were identified, and 67 of them were confirmed as aroma-active compounds by the application of the aroma extract dilution analysis coupled with gas chromatography-olfactometry. After making a simulated reconstitute by mixing 41 characterized aroma-active compounds (odor activity values ≥1) based on their concentrations, the aroma profile of the reconstitute showed good similarity to that of the original WJP liquor. Omission test further corroborated 34 key aroma-active compounds in the WJP liquor. The study of WJP liquor is expected to provide some insights into the characterization of special volatile components in traditional Chinese medicine liquors for the purpose of quality improvement and aroma optimization.


Assuntos
Compostos Orgânicos Voláteis , Bebidas Alcoólicas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Compostos Orgânicos Voláteis/análise
12.
Food Chem ; 346: 128906, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401086

RESUMO

Various dark teas are quite different in their volatile profiles, mainly due to the huge differences in the phytochemical profiles of dark raw tea and the diverse post-fermentation processing technologies. In this study, gas chromatography-mass spectrometry (GC-MS), qualitative GC-olfactometry (GC-O), and enantioselective GC-MS coupled with multivariate analysis were applied to characterise the volatile profiles of various dark teas obtained from the same dark raw tea material. A total of 159 volatile compounds were identified by stir bar sorptive extraction (SBSE) combined with GC-MS, and 49 odour-active compounds were identified. Moreover, microbial fermentation could greatly influence the distribution of volatile enantiomers in tea, and six pairs of enantiomers showed great diversity of enantiomeric ratios among various dark teas. These results suggest that post-fermentation processing technologies significantly affect the volatile profiles of various dark teas and provide a theoretical basis for the processing and quality control of dark tea products.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análise , Análise Discriminante , Análise dos Mínimos Quadrados , Odorantes/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Estereoisomerismo , Chá/metabolismo
13.
Food Chem ; 339: 128136, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152893

RESUMO

To investigate the key aroma compounds in Laoshan green teas (Huangshan (S1), Changling (S2), and Fangling (S3)), gas chromatography-mass spectrometry-olfactometry (GC-MS-O), a flame photometric detector (FPD), odor activity value (OAV), and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS) were employed. A total of 50 aroma compounds were perceived and 24 compounds were identified as important compounds related to OAV, such as dimethyl sulfide (OAV: 126-146), skatole (OAV: 27-50), furaneol (OAV: 8-27), (Z)-jasmone (OAV: 16-23), 2-methylbutanal (OAV: 15-22), and 3-methylbutanal (OAV: 68-87). Furthermore, the S-curve method was used to research the effect of aroma compounds on the threshold of aroma recombination (AR). The AR thresholds decreased from 3.8 mL to 0.45, 0.66, 0.93, 0.95, 0.75, 1.09, 3.01, and 2.57 mL after addition of eight compounds (skatole, furaneol, (Z)-jasmone, α-damascenone, sclareololide, dihydroactinidiolide, vanillin, and δ-valerolactone), indicating that those compounds (OAV >1) were contributors to the overall aroma of Laoshan teas.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Chá/química , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Humanos , Olfatometria/métodos , Compostos Orgânicos Voláteis/química
14.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629998

RESUMO

For the first time the volatile fraction of coffee silverskin has been studied focusing on odor-active compounds detected by gas chromatography-olfactometry/flame ionization detector (GC-O/FID) system. Two approaches, namely headspace (HS) analysis by solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and odor-active compounds analysis by gas chromatography-olfactometry/flame ionization detector (GC-O/FID), have been employed to fully characterize the aroma profile of this by-product. This work also provided an entire characterization of the bioactive compounds present in coffee silverskin, including alkaloids, chlorogenic acids, phenolic acids, flavonoids, and secoiridoids, by using different extraction procedures and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system. Coffee silverskin was shown to be a good source of caffeine and chlorogenic acids but also of phenolic acids and flavonoids. In addition, the fatty acid composition of the coffee silverskin was established by GC-FID system. The results from this research could contribute to the development of innovative applications and reuses of coffee silverskin, an interesting resource with a high potential to be tapped by the food and nutraceutical sector, and possibly also in the cosmetics and perfumery.


Assuntos
Café/química , Ácidos Graxos/análise , Odorantes/análise , Polifenóis/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfatometria/métodos , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
15.
Food Res Int ; 133: 109133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466910

RESUMO

Roselle (Hibiscus sabdariffa L.) is an edible flower belonging to the large family of Malvaceae. Aroma is one of the crucial parameters to determine the final tea overall quality and the consumer's preference and it is affected by different processing factors (drying, heating, brewing etc.). The aim of this study was to compare hot and cold brewing procedures on the aroma and aroma-active compounds of Beninese Roselle for the first time. Three different infusions were prepared and coded as R16M (16 min/98 °C), R40M (40 min/98 °C) and R24H (24 h/at ambient temperature). The aroma compounds of the infusion samples were extracted by liquid liquid extraction (LLE) method and determined by gas chromatography-mass spectrometry (GC-MS). A total of 38, 38 and 39 aroma compounds including alcohols, furans, acids, ketones, aldehydes, volatile phenols, lactones, pyranone, pyrrole, terpene and ester were detected in R16M, R40M and R24H infusions, respectively. The total aroma concentration of the cold infusion sample (R24H) was higher than those of two hot infusions. A significant reduction was found in the amount of these compounds in the sample prepared by hot infusion with 16 min (R16M). In all three samples, furans were identified as the dominant aroma group followed by alcohols. Based on the results of the aroma extract dilution analysis (AEDA), a total of 22 and 23 different key odorants were detected in hot infusions (R16M and R40M) and cold infusion (R24H) (ambient temperature), respectively. The powerful key odorants with regard to FD (flavor dilution) factors in all samples were prevailingly furans, alcohols, and aldehydes. The highest FD factors were found in furfural and 5-methyl-2-furfural providing caramel and bready notes. Principal component analysis (PCA) showed that Roselle infusions could clearly be discriminated in terms of their aroma profiles. The findings of this study demonstrate that the brewing procedures have a important impact on the final aroma and key odorants of Roselle infusions.


Assuntos
Flores/química , Hibiscus/química , Odorantes/análise , Chá/química , Temperatura , Temperatura Baixa , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Olfatometria/métodos , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise
16.
Food Res Int ; 130: 108908, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32156355

RESUMO

Longjing tea is the most famous premium green tea, and is regarded as the national tea in China, with its attractive aroma contributing as a prime factor for its general acceptability; however, its key aroma compounds are essentially unknown. In the present study, volatile compounds from Longjing tea were extracted and examined using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS). Data obtained from the present study revealed that 151 volatile compounds from 16 different chemical classes were identified by GC-MS analysis. Enols (8096 µg/kg), alkanes (6744 µg/kg), aldehydes (6442 µg/kg), and esters (6161 µg/kg) were the four major chemical classes and accounted for 54% of the total content of volatile compounds. Geraniol (6736 µg/kg) was the most abundant volatile compound in Longjing tea, followed by hexanal (1876 µg/kg) and ß-ionone (1837 µg/kg). Moreover, 14 volatile compounds were distinguished as the key aroma compounds of Longjing tea based on gas chromatography-olfactometry (GC-O) analysis, odor activity value (OAV) calculations, and a preliminary aroma recombination experiment, including 2-methyl butyraldehyde, dimethyl sulfoxide, heptanal, benzaldehyde, 1-octen-3-ol, (E, E)-2,4-heptadienal, benzeneacetaldehyde, linalool oxide I, (E, E)-3,5-octadien-2-one, linalool, nonanal, methyl salicylate, geraniol, and ß-ionone. This is the first comprehensive report describing the aroma characterizations and the key aroma compounds in Longjing tea using SBSE/GC-MS. The findings from this study contribute to the scientific elucidation of the chemical basis for the aromatic qualities of Longjing tea.


Assuntos
Fracionamento Químico/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Cromatografia Gasosa/métodos , Humanos , Compostos Orgânicos Voláteis/análise
17.
Food Chem ; 302: 125370, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442699

RESUMO

Four Arabica coffees (Brazil, Colombia, Ethiopia, and Guatemala) yield highly variant odours, attesting to the complexities of coffee aroma that command advanced analytical tools. In this study, their volatiles were extracted using solvent-assisted flavour evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). Due to matrix complexity, some trace odourants were detected in SAFE extracts by aroma extract dilution analysis (AEDA) but remained difficult to quantify by gas chromatography-mass spectrometry (GC-MS). This prompted the application of low energy electron ionisation (EI) coupled with GC-quadrupole time-of-flight (GC-QTOF). Optimal low EI GC-QTOF parameters (EI energy: 15 eV, acquisition rate: 3 Hz) were applied to achieve improved molecular ion signal intensity and reproducibility (relative standard deviation < 10%) across five compounds, which resulted in good linearity (R2 ≥ 0.999) and lowered detection levels (e.g. 0.025 ±â€¯0.005 ng/mL for 4-hydroxy-5-methyl-3(2H)-furanone). Therefore, this method potentially improves the measurement of trace odourants in complex matrices by increasing specificity and sensitivity.


Assuntos
Café/química , Análise de Alimentos/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Adulto , Brasil , Coffea/química , Colômbia , Etiópia , Feminino , Análise de Alimentos/estatística & dados numéricos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Guatemala , Humanos , Masculino , Pessoa de Meia-Idade , Olfatometria/métodos , Extratos Vegetais/química , Análise de Componente Principal , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Paladar , Compostos Orgânicos Voláteis/isolamento & purificação
18.
J Agric Food Chem ; 67(9): 2607-2616, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758196

RESUMO

Infusion-induced changes in the aroma and key odorants and their odor activity values of Iranian endemic herbal (Gol-Gavzaban) tea obtained from shade-dried violet-blue petals of borage ( Echium amoenum) were studied for the first time. Two hot teas and one cold tea were investigated and coded as 4MN (4 min/98 °C), 16MN (16 min/98 °C), and 24HR (24 h/ambient temperature), respectively. Aromatic extracts of the tea samples were isolated by the liquid-liquid extraction method and analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for the first time. According to the results of the aroma profiling, a total of 35 common aroma compounds comprising alcohols, acids, volatile phenols, lactones, aldehydes, ketone, pyrroles, and furans were identified and quantified in the tea samples. Indeed, it is worth noting that the aroma profiles of the borage teas were similar. However, the effects of the infusion techniques were clearly different as observed on the content of each individual and total compounds in the samples. The highest mean total concentration was detected in 24HR (266.0 mg/kg), followed by 16MN (247.1 mg/kg) and 4MN (216.1 mg/kg). 1-Penten-3-ol was the principal volatile component in all borage teas. On the basis of the result of the flavor dilution (FD) factors, a combined total of 22 different key odorants was detected. The potential key odorants with regard to FD factors in all samples were prevailingly alcohols, acids, and terpenes. The highest FD factors were observed in 2-hexanol (2048 in 4MN and 24HR; 1024 in 16MN) and 1-penten-3-ol (2048 in 24HR; 1024 in 4MN and 16MN) in samples providing herbal and green notes. Principal component analysis (PCA) showed that the tea samples could clearly be discriminated in terms of their aroma profiles and key odorants. The findings of the current study demonstrate that the tea preparation conditions have a significant impact on the organoleptic quality of borage tea.


Assuntos
Echium/química , Flores/química , Odorantes/análise , Extratos Vegetais/química , Chás de Ervas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Irã (Geográfico) , Olfatometria/métodos , Temperatura , Compostos Orgânicos Voláteis/análise , Água
19.
Food Chem ; 274: 130-136, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30372917

RESUMO

The unique aroma of the Hanzhong black tea is due to the special location of the harvesting place and specific manufacturing processes. In this study, a solid phase extraction method (SPE) as sample preparation tool was combined with gas chromatography (GC) as separation technique and several detection systems such as mass spectrometry (MS), flame ionization (FID) and olfactometry (O), which, together with sensorial analysis were used to characterize aroma compounds in Hanzhong black tea infusion. Seventy three aroma compounds were identified and quantified in the tea infusion by the GC-MS and GC-FID methods, respectively. Among them, odor perceptions of 24 compounds were characterized by the GC-O analysis. It was found that linalool oxide I, II and III, E,E-2,4-nonadienal, 4,5-dimethyl-3-hydroxy-2,5-dihydrofuran-2-one, 1-octen-3-one, E,Z-2,6-nonadienal, bis(2-methyl-3-furyl) disulfide had higher odor activity value in the tea infusion and offered floral, fatty, and caramel, mushroom, cucumber, and cooked beef -like odors, respectively. Overall, floral and mushroom and caramel -like odors significantly dominated in the Hanzhong black tea infusion.


Assuntos
Odorantes/análise , Olfatometria/métodos , Extração em Fase Sólida/métodos , Chá/química , Monoterpenos Acíclicos , Camellia sinensis/química , Cicloexanóis/análise , Ionização de Chama , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Monoterpenos/análise , Compostos de Tritil/análise , Compostos Orgânicos Voláteis/análise
20.
Phytochem Anal ; 30(2): 139-147, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30378730

RESUMO

INTRODUCTION: Flowering of the Asian skunk cabbage (Symplocarpus renifolius, Araceae) shows a sequential expression of female, bisexual and male sex phases. The protogynous thermogenic inflorescence has unpleasant odours, but the contributing chemical composition is poorly understood. OBJECTIVE: To determine the volatile composition of odour emissions from each S. renifolius flowering phase. METHODOLOGY: The dynamic headspace method was used to collect floral volatiles from six intact S. renifolius inflorescences in their natural habitat. Collected volatiles from the three flowering phases were analysed using gas chromatography-mass spectrometry/olfactometry (GC-MS/O). RESULTS: Female-phase inflorescences were characterised by an earthy-rotten-minty odour, while male-phase inflorescences typically exhibited a rotten-oily odour. Approximately 160 compounds were detected in volatiles from the three phases. Common to all phases were 3-methylbutyl 3-methylbutanoate, 1,8-cineole, dimethyl disulphide and sabinene, together accounting for 52 to 54% of total volatiles. GC-MS/O revealed that at least 28 volatiles including eight S-containing compounds contributed to the unpleasant odour of S. renifolius. Among them, dimethyl disulphide (onion-like), methional (potato-like), and the tentatively identified methyl dithioformate (garlic-like) were intense odour-active compounds in each floral phase. Additionally, 2-isopropyl-3-methoxypyrazine (IPMP) was a major contributor to the earthy odour that was characteristic of the female phase. CONCLUSIONS: No marked changes were observed in floral volatile compositions over the three flowering phases of S. renifolius. Instead, flower phase-dependent proportional changes of minor components (e.g. IPMP and 2,3-butanedione) altered the odour characteristics between the female and male phases.


Assuntos
Araceae/química , Inflorescência/química , Odorantes/análise , Óvulo Vegetal , Pólen , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfatometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA