Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.041
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602357

RESUMO

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Assuntos
Berberina , Ácido Clorogênico , Osteoporose , Osteoporose/tratamento farmacológico , Animais , Camundongos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Berberina/administração & dosagem , Berberina/farmacocinética , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/administração & dosagem , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
2.
Pediatr Transplant ; 28(3): e14755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623895

RESUMO

BACKGROUND: Hepatic osteodystrophy refers to bone disorders associated with chronic liver disease, including children undergoing liver transplantation (LT). The aim of this study was to quantify the prevalence of pathological fractures (PF) in children before and after LT and to identify associated factors for their occurrence. METHODS: Children aged 0-18 years who underwent LT from 1/2005 to 12/2020 were included in this retrospective study. Data on patient demographics, types and anatomical locations of fracture and biological workups were extracted. Variables were assessed at 3 time points: T - 1 at the moment of listing for LT; T0 at the moment of LT and T + 1 at 1-year post-LT. RESULTS: A total of 105 children (49 [47%] females) were included in this study. Median age at LT was 19 months (range 0-203). Twenty-two patients (21%) experienced 65 PF, 11 children before LT, 10 after LT, and 1 before and after LT. The following variables were observed as associated with PF: At T - 1, low weight and height z-scores, and delayed bone age; at T0, low weight and height z-scores, high total and conjugated bilirubin; at T + 1, persistent low height z-score. Patients in the PF-group were significantly more under calcium supplementation and/or nutritional support at T - 1, T0 and T + 1. CONCLUSION: More than one in five children needing LT sustain a PF before or after LT. Patients with low weight and height z-scores and delayed bone age are at increased risk for PF. Nutritional support remains important, even if to date it cannot fully counteract the risks of PF.


Assuntos
Doenças Ósseas , Fraturas Ósseas , Transplante de Fígado , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fraturas Ósseas/etiologia , Osso e Ossos
3.
BMJ Open ; 14(4): e080235, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580373

RESUMO

INTRODUCTION: Children with sickle cell disease show a significant decrease in bone mineral density, an increase in resting energy expenditure of more than 15%, a decrease in fat and lean mass as well as a significant increase in protein turnover, particularly in bone tissue. This study aims to evaluate the effectiveness of an increase in food intake on bone mineral density and the clinical and biological complications of paediatric sickle cell disease. METHODS AND ANALYSIS: The study is designed as an open-label randomised controlled clinical trial conducted in the Paediatrics Unit of the Orléans University Hospital Centre. Participants aged 3-16 years will be randomly divided into two groups: the intervention group will receive oral nutritional supplements (pharmacological nutritional hypercaloric products) while the control group will receive age-appropriate and gender-appropriate nutritional intake during 12 months. Total body less head bone mineral density will be measured at the beginning and the end of the trial. A rigorous nutritional follow-up by weekly 24 hours recall dietary assessment and planned contacts every 6 weeks will be carried out throughout the study. A school absenteeism questionnaire, intended to reflect the patient's school productivity, will be completed by participants and parents every 3 months. Blood samples of each patient of both groups will be stocked at the beginning and at the end of the trial, for future biological trial. Clinical and biological complications will be regularly monitored. ETHICS AND DISSEMINATION: The protocol has been approved by the French ethics committee (Comité de Protection des Personnes Sud-Ouest et Outre-Mer 2, Toulouse; approval no: 2-20-092 id9534). Children and their parents will give informed consent to participate in the study before taking part. Results will be disseminated through peer-reviewed journals or international academic conferences. TRIAL REGISTRATION NUMBER: NCT04754711.


Assuntos
Anemia Falciforme , Densidade Óssea , Humanos , Criança , Suplementos Nutricionais , Osso e Ossos , Anemia Falciforme/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Mar Drugs ; 22(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667779

RESUMO

With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.


Assuntos
Osso e Ossos , Suplementos Nutricionais , Minerais , Alimentos Marinhos , Animais , Osso e Ossos/metabolismo , Hidrólise , Salmão/metabolismo , Disponibilidade Biológica , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hidrolisados de Proteína/química , Pós
5.
J Trace Elem Med Biol ; 84: 127446, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615498

RESUMO

Osteoporosis is associated with an imbalance in bone formation, with certain drugs used in disease treatment being implicated in its development. Supplementation with trace elements may contribute to bone regeneration, offering an alternative approach by enhancing bone mineral density (BMD) and thereby thwarting the onset of osteoporosis. This review aims to assess the mechanisms through which trace elements such as copper (Cu), iron (Fe), selenium (Se), manganese (Mn), and zinc (Zn) are linked to increased bone mass, thus mitigating the effects of pharmaceuticals. Our findings underscore that the use of drugs such as aromatase inhibitors (AIs), proton pump inhibitors (PPIs), antiretrovirals, glucocorticoids, opioids, or anticonvulsants can result in decreased BMD, a primary contributor to osteoporosis. Research indicates that essential elements like Cu, Fe, Se, Mn, and Zn, through various mechanisms, can bolster BMD and forestall the onset of the disease, owing to their protective effects. Consequently, our study recommends a minimum daily intake of these essential minerals for patients undergoing treatment with the aforementioned drugs, as the diverse mechanisms governing the effects of trace elements Cu, Fe, Mn, Se, and Zn facilitate bone remodeling.


Assuntos
Osteoporose , Oligoelementos , Humanos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Oligoelementos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
6.
J Ethnopharmacol ; 329: 118141, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW: Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS: To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS: This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION: In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.


Assuntos
Regeneração Óssea , Medicamentos de Ervas Chinesas , Homeostase , Medicina Tradicional Chinesa , Osteoporose , Alicerces Teciduais , Osteoporose/tratamento farmacológico , Regeneração Óssea/efeitos dos fármacos , Animais , Humanos , Medicina Tradicional Chinesa/métodos , Homeostase/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
7.
Phytomedicine ; 129: 155604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614042

RESUMO

BACKGROUND: Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE: This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS: The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS: Ginsenoside monomers regulate signaling pathways such as WNT/ß-catenin, FGF, and BMP/TGF-ß, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/ß-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION: The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.


Assuntos
Ginsenosídeos , Osteoblastos , Osteogênese , Ginsenosídeos/farmacologia , Humanos , Osteogênese/efeitos dos fármacos , Animais , Osteoblastos/efeitos dos fármacos , Engenharia Tecidual/métodos , Osso e Ossos/efeitos dos fármacos
8.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542823

RESUMO

The aim of our study was to analyse the effect of supplementation with various forms of genistein (nano-, micro-, and macro-) on the mineral status of rat femurs in conditions of DMBA-induced mammary gland neoplasia. Thirty-two 30-day-old Sprague Dawley rats were used in the study. The rats were divided into four experimental groups: a control group (without supplementation) and groups supplemented with nanosized (92 ± 41 nm), microsized (587 ± 83 nm), and macrosized genistein. Micromorphometric and histological examination of the rat femurs were performed, as well as analysis of the weight and mineral composition (17 elements). Quadrupole ICP-MS was used for analysis of all trace elements. Supplementation with genistein (nano-, micro-, and macro-) was shown to cause changes in the mineral composition of the bones. In the rats receiving nanogenistein, disintegration of the bone tissue was observed. The femurs of these animals had higher content of calcium (by nearly 300%) and potassium (by 25%) than the other groups, while the level of magnesium was about 22% lower. In the case of microelements, there were increases in copper (by 67%), boron (48%), manganese (13%), and nickel (100%), and a 16% decrease in strontium compared to the bones of rats without genistein supplementation. Changes in micromorphometric parameters, resulting in increased bone fragility, were observed. Administration of genistein was found to have an effect on the amount of trace elements in the bone tissue of rats with breast cancer.


Assuntos
Neoplasias , Oligoelementos , Ratos , Animais , Genisteína/farmacologia , Ratos Sprague-Dawley , Densidade Óssea , Osso e Ossos , Suplementos Nutricionais , Minerais
9.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas Alimentares/farmacologia
10.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337624

RESUMO

Studies have attempted to demonstrate the benefits of silicon on bone health using a wide range of Si amounts-provided in the diet or through supplementation-and several different animal species. Previous studies in humans have also demonstrated a positive correlation between Si intake and bone health measures. The aim of the current review is to determine the effective levels of Si intake or supplementation that influence bone health to better inform future study designs and guidelines. Articles were identified using one of two search terms: "silicon AND bone" or "sodium zeolite A AND bone". Articles were included if the article was a controlled research study on the effect of Si on bone health and/or mineral metabolism and was in English. Articles were excluded if the article included human subjects, was in vitro, or studied silica grafts for bone injuries. Silicon type, group name, Si intake from diet, Si supplementation amount, animal, and age at the start were extracted when available. Dietary Si intake, Si supplementation amount, and the amount of Si standardized on a kg BW basis were calculated and presented as overall mean ± standard deviations, medians, minimums, and maximums. Studies that left out animal weights, amount of food or water consumed, or nutrient profiles of the basal diet were excluded from these calculations. Standardized Si intakes ranged from 0.003 to 863 mg/kg BW, at times vastly exceeding current human Si intake recommendations (25 mg/d). The lack of data provided by the literature made definitively determining an effective threshold of supplementation for skeletal health difficult. However, it appears that Si consistently positively influences bone and mineral metabolism by around 139 mg Si/kg BW/d, which is likely unfeasible to attain in humans and large animal species. Future studies should examine this proposed threshold more directly and standardize supplemental or dietary Si intakes to kg BW for better study replication and translation.


Assuntos
Densidade Óssea , Silício , Animais , Humanos , Silício/metabolismo , Osso e Ossos/metabolismo , Suplementos Nutricionais , Minerais/farmacologia
11.
Acta Biomater ; 177: 300-315, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340886

RESUMO

The vertebral centra of sharks consist of cartilage, and many species' centra contain a bioapatite related to that in bone. Centra microarchitectures at the 0.5-50 µm scale do not appear to have been described previously. This study examines centrum microarchitecture in lamniform and carcharhiniform sharks with synchrotron microComputed Tomography (microCT), scanning electron microscopy and spectroscopy and light microscopy. The analysis centers on the blue shark (carcharhiniform) and shortfin mako (lamniform), species studied with all three modalities. Synchrotron microCT results from seven other species complete the report. The main centrum structures, the corpus calcareum and intermedialia, consist of fine, closely-spaced, mineralized trabeculae whose mean thicknesses and spacings range from 4.5 to 11.2 µm and 4.5 to 15.6 µm, respectively. A significant (p = 0.00001) positive linear relationship between and exists for multiple positions within one mako centrum. Carcharhiniform species' and exhibit an inverse linear relationship (p = 0.005) while in lamniforms these variables tend toward a positive relationship which does not reach statistical significance (p = 0.099). In all species, the trabeculae form an uninterrupted, interconnected network, and the unmineralized volumes are similarly interconnected. Small differences in mineralization level are observed in trabeculae. Centrum growth band pairs are found to consist of locally higher /lower mineral volume fraction. Within the intermedialia, radial canals and radial microrods were characterized, and compacted trabeculae are prominent in the mako intermedialia. The centra's mineralized central zones were non-trabecular and are also described. STATEMENT OF SIGNIFICANCE: This study's novel result is the demonstration that the mineralized cartilage of sharks' vertebral bodies (centra) consists of a fine 3D array of interconnected plates (trabeculae) and an interpenetrating network of unmineralized tissue. This microstructure is radically different from that in tesserae or in teeth, the other main mineralized shark tissues. Using volumetric synchrotron microComputed Tomography, numerical values of mean trabecular thickness and spacing and their relationship were measured for nine species. Scanning electron microscopy added a higher resolution view of the microstructures, and histology provided complementary information on cartilage and cells. The present results suggest centra microstructure helps accommodate the very large in vivo strains and may prevent damage accumulation during millions of cycles of swimming-induced loading.


Assuntos
Tubarões , Dente , Animais , Corpo Vertebral , Microtomografia por Raio-X , Osso e Ossos
12.
Curr Top Med Chem ; 24(7): 634-643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333981

RESUMO

Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.


Assuntos
Osso e Ossos , Medicina Herbária , Homeostase , Humanos , Homeostase/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Plantas Medicinais/química , Osteoporose/tratamento farmacológico , Doenças Ósseas/tratamento farmacológico , Animais
13.
Br J Nutr ; 131(9): 1473-1487, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221822

RESUMO

Vitamin D is a vital indicator of musculoskeletal health, as it plays an important role through the regulation of bone and mineral metabolism. This meta-analysis was performed to investigate the effects of vitamin D supplementation/fortification on bone turnover markers in women. All human randomised clinical trials reported changes in bone resorption markers (serum C-terminal telopeptide of type-I collagen (sCTX) and urinary type I collagen cross-linked N-telopeptide (uNTX)) or bone formation factors (osteocalcin (OC), bone alkaline phosphatase (BALP) and procollagen type-1 intact N-terminal propeptide (P1NP)) following vitamin D administration in women (aged ≥ 18 years) were considered. Mean differences (MD) and their respective 95 % CI were calculated based on fixed or random effects models according to the heterogeneity status. Subgroup analyses, meta-regression models, sensitivity analysis, risk of bias, publication bias and the quality of the included studies were also evaluated. We found that vitamin D supplementation had considerable effect on sCTX (MD: -0·038, n 22) and OC (MD: -0·610, n 24) with high heterogeneity and uNTX (MD: -8·188, n 6) without heterogeneity. Our results showed that age, sample size, dose, duration, baseline vitamin D level, study region and quality of studies might be sources of heterogeneity in this meta-analysis. Subgroup analysis also revealed significant reductions in P1NP level in dose less than 600 µg/d and larger study sample size (>100 participants). Moreover, no significant change was found in BALP level. Vitamin D supplementation/fortification significantly reduced bone resorption markers in women. However, results were inconsistent for bone formation markers.


Assuntos
Biomarcadores , Remodelação Óssea , Suplementos Nutricionais , Vitamina D , Humanos , Vitamina D/sangue , Vitamina D/administração & dosagem , Feminino , Biomarcadores/sangue , Remodelação Óssea/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Reabsorção Óssea/prevenção & controle , Colágeno Tipo I/sangue , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osteocalcina/sangue , Fosfatase Alcalina/sangue , Peptídeos/sangue , Alimentos Fortificados
14.
Pediatr Radiol ; 54(2): 316-323, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38227019

RESUMO

BACKGROUND: Several pathological conditions can lead to variations in bone mineral content during growth. When assessing bone age, bone mineral content can be estimated without supplementary cost and irradiation. Manual assessment of bone quality using the Exton-Smith index (ESI) and automated assessment of the bone health index (BHI) provided by the BoneXpert® software are available but still not validated in different ethnic groups. OBJECTIVE: Our aim is to provide normative values of the ESI and BHI for healthy European Caucasian and first-generation children of North Africans living in Europe. MATERIALS AND METHODS: A sex- and aged-match population of 214 girls (107 European-Caucasian and 107 North African) and 220 boys (111 European-Caucasian and 109 North African) were retrospectively and consecutively included in the study. Normal radiographs of the left hand and wrist from healthy children were retrieved from those performed in a single institution from 2008 to 2017 to rule out a left-hand fracture. Radiographs were processed by BoneXpert® to obtain the BHI and BHI standard deviation score (SDS). One radiologist, blinded to BHI values, manually calculated ESI for each patient. The variability for both methods was assessed and compared using the standard deviation (SD) of the median (%) for each class of age and sex, and ESI and BHI trends were compared by sex and ethnic group. RESULTS: The final population comprised 434 children ages 3 to 15 years (214 girls). Overall, BHI was lower in North African children (mean = 4.23 for girls and 4.17 in boys) than in European Caucasians (mean = 4.50 for girls and 4.68 in boys) (P < 0.001). Regardless of ethnicity, 29 girls (13.6%) and 34 boys (15.5%) had BHI more than 2 SD from the mean. While correlated to BHI, ESI has a higher variability than BHI and is more pronounced from 8-12 years for both sexes (mean ESI in European Caucasian girls and boys 17.47 and 20.87, respectively) (P < 0.001). ESI showed more than 15% variability in European girls from 8-12 years and a plateau in North African boys from 12 years to 16 years. However, the BHI has less than 15% variability regardless of age and ethnic group. CONCLUSION: BHI may be a reliable tool to detect children with abnormal bone mineral content, with lower variability compared to ESI and with specific trends depending on sex and ethnicity.


Assuntos
Densidade Óssea , Etnicidade , Masculino , Criança , Feminino , Humanos , Idoso , Projetos Piloto , Estudos Retrospectivos , Osso e Ossos/diagnóstico por imagem
15.
Curr Drug Targets ; 25(2): 135-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213165

RESUMO

BACKGROUND: Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment. METHODS: Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR. RESULTS: 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels. CONCLUSION: The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.


Assuntos
Osteoporose , Animais , Osteoporose/tratamento farmacológico , Densidade Óssea , Colágeno Tipo I/uso terapêutico , Osso e Ossos , Modelos Animais
16.
BMC Oral Health ; 24(1): 147, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297232

RESUMO

BACKGROUND: This study explores the effectiveness of Photobiomodulation Therapy (PBMT) in enhancing orthodontic tooth movement (OTM), osteogenesis, and angiogenesis through a comprehensive series of in vitro and in vivo investigations. The in vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells to assess PBMT's impact on cell proliferation, osteogenesis, angiogenesis, and associated gene expression. Simultaneously, an in vivo experiment utilized an OTM rat model subjected to laser irradiation at specific energy densities. METHODS: In vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells treated with PBMT, enabling a comprehensive assessment of cell proliferation, osteogenesis, angiogenesis, and gene expression. In vivo, an OTM rat model was subjected to laser irradiation at specified energy densities. Statistical analyses were performed to evaluate the significance of observed differences. RESULTS: The results revealed a significant increase in blood vessel formation and new bone generation within the PBMT-treated group compared to the control group. In vitro, PBMT demonstrated positive effects on cell proliferation, osteogenesis, angiogenesis, and gene expression in the co-culture model. In vivo, laser irradiation at specific energy densities significantly enhanced OTM, angiogenesis, and osteogenesis. CONCLUSIONS: This study highlights the substantial potential of PBMT in improving post-orthodontic bone quality. The observed enhancements in angiogenesis and osteogenesis suggest a pivotal role for PBMT in optimizing treatment outcomes in orthodontic practices. The findings position PBMT as a promising therapeutic intervention that could be seamlessly integrated into orthodontic protocols, offering a novel dimension to enhance overall treatment efficacy. Beyond the laboratory, these results suggest practical significance for PBMT in clinical scenarios, emphasizing its potential to contribute to the advancement of orthodontic treatments. Further exploration of PBMT in orthodontic practices is warranted to unlock its full therapeutic potential.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteogênese , Ratos , Animais , Terapia com Luz de Baixa Intensidade/métodos , Técnicas de Movimentação Dentária , Angiogênese , Osso e Ossos
17.
Radiat Environ Biophys ; 63(1): 109-123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197921

RESUMO

The United States Transuranium and Uranium Registries' (USTUR) female whole body tissue donor studied here was occupationally exposed to highly enriched uranium for 17 years. One hundred and twenty-nine tissue samples were collected at the time of death, 31 years post-exposure. These samples were radiochemically analyzed for uranium. The highest uranium concentration of 16.5 ± 2.0 µg kg-1 was measured in the lungs, and the lowest concentration of 0.11 ± 0.01 µg kg-1 in the liver. The thyroid had the highest concentration of 6.3 ± 2.9 µg kg-1 among systemic tissues. Mass-weighted average concentration in the entire skeleton was estimated to be 1.60 ± 0.19 µg kg-1. In the skeleton, uranium was non-uniformly distributed among different bones. Thirty-one years after the intake, approximately 40% of occupational uranium was still retained in the skeleton, followed by the kidneys (~ 30%), and the brain and liver (~ 10%). Systemic uranium was equally distributed between the skeleton and soft tissues. Uranium content in systemic organs followed the pattern: skeleton > > brain ≈ kidneys > heart ≈ liver > thyroid ≈ spleen. Uranium distribution in this female was compared to previously published USTUR data for male tissue donors. It is concluded that no difference in uranium systemic distribution was observed between female and male individuals. It is demonstrated that dose assessment based on the current ICRP biokinetic model overestimated the dose to the brain by 20%.


Assuntos
Urânio , Humanos , Masculino , Feminino , Urânio/análise , Pulmão , Osso e Ossos
18.
Bone Res ; 12(1): 1, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212599

RESUMO

The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown. To address this knowledge gap, we developed a mouse model to simulate male-to-female transition in human adolescents in whom puberty is first arrested by using gonadotrophin-releasing hormone analogs with subsequent estradiol treatment. Puberty was suppressed by orchidectomy in male mice at 5 weeks of age. At 3 weeks post-surgery, male-to-female mice were treated with a high dose of estradiol (~0.85 mg) by intraperitoneal silastic implantation for 12 weeks. Controls included intact and orchidectomized males at 3 weeks post-surgery, vehicle-treated intact males, intact females and orchidectomized males at 12 weeks post-treatment. Compared to male controls, orchidectomized males exhibited decreased peak bone mass accrual and a decreased maximal force the bone could withstand prior to fracture. Estradiol treatment in orchidectomized male-to-female mice compared to mice in all control groups was associated with an increased cortical thickness in the mid-diaphysis, while the periosteal circumference increased to a level that was intermediate between intact male and female controls, resulting in increased maximal force and stiffness. In trabecular bone, estradiol treatment increased newly formed trabeculae arising from the growth plate as well as mineralizing surface/bone surface and bone formation rate, consistent with the anabolic action of estradiol on osteoblast proliferation. These data support the concept that skeletal integrity can be preserved and that long-term fractures may be prevented in trans girls treated with GnRHa and a sufficiently high dose of GAHT. Further study is needed to identify an optimal dose of estradiol that protects the bone without adverse side effects.


Assuntos
Osso Esponjoso , Estradiol , Adolescente , Masculino , Humanos , Feminino , Camundongos , Animais , Estradiol/farmacologia , Osso e Ossos , Identidade de Gênero , Modelos Animais de Doenças
19.
Adv Sci (Weinh) ; 11(6): e2307094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064119

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease featuring an abnormal immune microenvironment and resultant accumulation of hydrogen ions (H+ ) produced by activated osteoclasts (OCs). Currently, clinic RA therapy can hardly achieve sustained or efficient therapeutic outcomes due to the failures in generating sufficient immune modulation and manipulating the accumulation of H+ that deteriorates bone damage. Herein, a highly effective immune modulatory nanocatalytic platform, nanoceria-loaded magnesium aluminum layered double hydroxide (LDH-CeO2 ), is proposed for enhanced immune modulation based on acid neutralization and metal ion inherent bioactivity. Specifically, the mild alkaline LDH initiates significant M2 repolarization of macrophages triggered by the elevated antioxidation effect of CeO2 via neutralizing excessive H+ in RA microenvironment, thus resulting in the efficient recruitment of regulatory T cell (Treg) and suppressions on T helper 17 cell (Th 17) and plasma cells. Moreover, the osteogenic activity is stimulated by the Mg ion released from LDH, thereby promoting the damaged bone healing. The encouraging therapeutic outcomes in adjuvant-induced RA model mice demonstrate the high feasibility of such a therapeutic concept, which provides a novel and efficient RA therapeutic modality by the immune modulatory and bone-repairing effects of inorganic nanocatalytic material.


Assuntos
Artrite Reumatoide , Camundongos , Animais , Artrite Reumatoide/tratamento farmacológico , Osso e Ossos , Macrófagos , Osteogênese , Hidróxidos
20.
J Control Release ; 365: 848-875, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37734674

RESUMO

Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.


Assuntos
Substitutos Ósseos , Humanos , Substitutos Ósseos/química , Alicerces Teciduais/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Osso e Ossos , Regeneração Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA