Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.242
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667779

RESUMO

With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.


Assuntos
Osso e Ossos , Suplementos Nutricionais , Minerais , Alimentos Marinhos , Animais , Osso e Ossos/metabolismo , Hidrólise , Salmão/metabolismo , Disponibilidade Biológica , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hidrolisados de Proteína/química , Pós
2.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas Alimentares/farmacologia
3.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337624

RESUMO

Studies have attempted to demonstrate the benefits of silicon on bone health using a wide range of Si amounts-provided in the diet or through supplementation-and several different animal species. Previous studies in humans have also demonstrated a positive correlation between Si intake and bone health measures. The aim of the current review is to determine the effective levels of Si intake or supplementation that influence bone health to better inform future study designs and guidelines. Articles were identified using one of two search terms: "silicon AND bone" or "sodium zeolite A AND bone". Articles were included if the article was a controlled research study on the effect of Si on bone health and/or mineral metabolism and was in English. Articles were excluded if the article included human subjects, was in vitro, or studied silica grafts for bone injuries. Silicon type, group name, Si intake from diet, Si supplementation amount, animal, and age at the start were extracted when available. Dietary Si intake, Si supplementation amount, and the amount of Si standardized on a kg BW basis were calculated and presented as overall mean ± standard deviations, medians, minimums, and maximums. Studies that left out animal weights, amount of food or water consumed, or nutrient profiles of the basal diet were excluded from these calculations. Standardized Si intakes ranged from 0.003 to 863 mg/kg BW, at times vastly exceeding current human Si intake recommendations (25 mg/d). The lack of data provided by the literature made definitively determining an effective threshold of supplementation for skeletal health difficult. However, it appears that Si consistently positively influences bone and mineral metabolism by around 139 mg Si/kg BW/d, which is likely unfeasible to attain in humans and large animal species. Future studies should examine this proposed threshold more directly and standardize supplemental or dietary Si intakes to kg BW for better study replication and translation.


Assuntos
Densidade Óssea , Silício , Animais , Humanos , Silício/metabolismo , Osso e Ossos/metabolismo , Suplementos Nutricionais , Minerais/farmacologia
4.
Br J Nutr ; 131(9): 1473-1487, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221822

RESUMO

Vitamin D is a vital indicator of musculoskeletal health, as it plays an important role through the regulation of bone and mineral metabolism. This meta-analysis was performed to investigate the effects of vitamin D supplementation/fortification on bone turnover markers in women. All human randomised clinical trials reported changes in bone resorption markers (serum C-terminal telopeptide of type-I collagen (sCTX) and urinary type I collagen cross-linked N-telopeptide (uNTX)) or bone formation factors (osteocalcin (OC), bone alkaline phosphatase (BALP) and procollagen type-1 intact N-terminal propeptide (P1NP)) following vitamin D administration in women (aged ≥ 18 years) were considered. Mean differences (MD) and their respective 95 % CI were calculated based on fixed or random effects models according to the heterogeneity status. Subgroup analyses, meta-regression models, sensitivity analysis, risk of bias, publication bias and the quality of the included studies were also evaluated. We found that vitamin D supplementation had considerable effect on sCTX (MD: -0·038, n 22) and OC (MD: -0·610, n 24) with high heterogeneity and uNTX (MD: -8·188, n 6) without heterogeneity. Our results showed that age, sample size, dose, duration, baseline vitamin D level, study region and quality of studies might be sources of heterogeneity in this meta-analysis. Subgroup analysis also revealed significant reductions in P1NP level in dose less than 600 µg/d and larger study sample size (>100 participants). Moreover, no significant change was found in BALP level. Vitamin D supplementation/fortification significantly reduced bone resorption markers in women. However, results were inconsistent for bone formation markers.


Assuntos
Biomarcadores , Remodelação Óssea , Suplementos Nutricionais , Vitamina D , Humanos , Vitamina D/sangue , Vitamina D/administração & dosagem , Feminino , Biomarcadores/sangue , Remodelação Óssea/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Reabsorção Óssea/prevenção & controle , Colágeno Tipo I/sangue , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osteocalcina/sangue , Fosfatase Alcalina/sangue , Peptídeos/sangue , Alimentos Fortificados
5.
Front Endocrinol (Lausanne) ; 14: 1234683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916145

RESUMO

Osteoporosis is a systemic bone disease characterized by an imbalance in the relationship between osteoblasts, osteocytes, and osteoclasts. This imbalance in bone metabolism results in the destruction of the bone's microstructure and an increase in bone brittleness, thereby increasing the risk of fractures. Osteoporosis has complex causes, one of which is related to the dysregulation of 5-hydroxytryptamine, a neurotransmitter closely associated with bone tissue metabolism. Dysregulation of 5-HT directly or indirectly promotes the occurrence and development of osteoporosis. This paper aims to discuss the regulation of 5-HT by Traditional Chinese Medicine and its impact on bone metabolism, as well as the underlying mechanism of action. The results of this study demonstrate that Traditional Chinese Medicine has the ability to regulate 5-HT, thereby modulating bone metabolism and improving bone loss. These findings provide valuable insights for future osteoporosis treatment.


Assuntos
Medicina Tradicional Chinesa , Osteoporose , Serotonina , Humanos , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Osteoporose/terapia , Serotonina/uso terapêutico
6.
Commun Biol ; 6(1): 1043, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37833362

RESUMO

Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.


Assuntos
Medula Óssea , Ácidos Graxos Ômega-3 , Humanos , Camundongos , Animais , Medula Óssea/metabolismo , Adiposidade , Osso e Ossos/metabolismo , Obesidade/complicações , Obesidade/prevenção & controle , Obesidade/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Modelos Animais de Doenças
7.
Biomater Adv ; 154: 213622, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742556

RESUMO

Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.


Assuntos
Fosfatase Alcalina , Alho , Ratos , Animais , Humanos , Fosfatase Alcalina/genética , Monócitos/metabolismo , Técnicas de Cocultura , Alho/metabolismo , Osso e Ossos/metabolismo
8.
Mol Biol Rep ; 50(11): 9453-9468, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676432

RESUMO

Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.


Assuntos
Fraturas Ósseas , Osteoporose , Plantas Medicinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osso e Ossos/metabolismo , Medicina Herbária , Osteogênese
9.
Life Sci ; 328: 121927, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437650

RESUMO

Low bone density, fragility, and microarchitectural disintegration are the symptoms of osteoporosis. An imbalance between bone growth and resorption can lead to osteoporosis. This study evaluated the effects of amino-calcium (AC) on bone protection in ovariectomized control group (NC) rats. Amino-calcium (AC) was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), and nuclear magnetic resonance spectroscopy analyses (NMR). After determining the biocompatibility of amino-calcium (AC) with MC3T3-E1 cells, alkaline phosphatase staining revealed significant changes on day 7. Three of the four groups underwent ovariectomy, whereas one group received a placebo. On micro-computed tomography, in vivo, data showed increased bone volume fraction in the femoral head and shaft areas in the amino-calcium (AC) group. Hematoxylin and eosin staining showed a bone mass and architectural protection in the amino-calcium (AC) group compared with the calcium carbonate and OVX control group. RNA sequencing analysis revealed high expression of osteogenesis-related genes in MC3T3-E1 cells. RNA sequencing revealed a significant fold change in the expression of integrin-binding sialoprotein (IBSP), bone gamma-carboxyglutamate proteins 1 and 2(BGLAP1 and BGLAP2), and periostin (POSTN). The study concluded that supplementing the OVX rats with calcium enhanced bone protection.


Assuntos
Cálcio , Osteoporose , Feminino , Ratos , Animais , Humanos , Cálcio/farmacologia , Microtomografia por Raio-X , Espectroscopia de Infravermelho com Transformada de Fourier , Osso e Ossos/metabolismo , Cálcio da Dieta , Osteoporose/metabolismo , Densidade Óssea , Ovariectomia
10.
Front Endocrinol (Lausanne) ; 14: 1121727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293482

RESUMO

The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true "orchestrators of bone remodeling" cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Osteócitos/metabolismo
11.
Biomolecules ; 13(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37371586

RESUMO

The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/ß-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.


Assuntos
Osteoporose , Oligoelementos , Humanos , Oligoelementos/farmacologia , Osteogênese , Minerais/metabolismo , Osteoporose/metabolismo , Osso e Ossos/metabolismo
12.
Poult Sci ; 102(8): 102851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356300

RESUMO

The dietary needs of calcium (Ca) and phosphorus (P) are interdependent, thus accurate evaluation of Ca and P requirements of broilers to support skeleton health and optimal growth is critical. The present study was carried out to investigate the effects of dietary Ca and nonphytate P (NPP) levels and their interactions on growth performance, tibiotarsus characteristics, tibiotarsus metabolism-related enzyme and proteins, and their gene expression of broilers, so as to provide a rational recommendation for Ca and NPP levels in diet. A total of 540 one-day-old Arbor Acres male broilers were randomly allotted to 1 of 15 treatments with 6 replicate cages of 6 birds per cage for each treatment in a completely randomized design involving a 5 × 3 factorial arrangement of treatments (5 levels of Ca × 3 levels of NPP). The birds were fed the corn-soybean meal diet containing 0.60%, 0.70%, 0.80%, 0.90%, or 1.00% Ca and 0.35%, 0.40%, or 0.45% NPP for 21 d. Dietary Ca level affected (P < 0.03) the bone mineral density, bone mineral content (BMC), breaking strength, ash percentage and ash Ca contents in tibia, which showed linear (P < 0.006) responses to dietary Ca levels. Dietary NPP level affected (P < 0.05) tibia BMC, ash percentage, and FGF23 mRNA level. Broilers that received 0.40% and 0.45% NPP had higher (P < 0.04) tibia BMC and ash percentage than those that received 0.35% NPP, but no differences (P > 0.05) were found between 0.40% and 0.45% NPP. Broilers that received 0.40% NPP had higher (P = 0.02) tibia FGF23 mRNA level than those that received 0.35% NPP, but no differences (P > 0.05) were detected between 0.40% and 0.45% NPP or 0.45% and 0.35% NPP. The interactions between dietary Ca and NPP affected (P < 0.05) ADG, ALP activity, bone gal protein, FGF23 contents, and the mRNA expression levels ALP and bone gal protein in tibia of broilers. Results from the present study indicate that dietary Ca and NPP interaction influences growth, tibiotarsus development, and related gene expression of broiler chickens. Considering all the criteria, the dietary levels of 0.90% Ca and 0.45% NPP would be optimal for both growth and tibiotarsus development of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age.


Assuntos
Cálcio da Dieta , Fósforo na Dieta , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Osso e Ossos/metabolismo , Cálcio da Dieta/metabolismo , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , Fósforo/metabolismo , Fósforo na Dieta/metabolismo
13.
Nutrients ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375708

RESUMO

Vitamin D plays a vital role in regulating calcium and phosphate metabolism and maintaining bone health. A state of prolonged or profound vitamin D deficiency (VDD) can result in rickets in children and osteomalacia in children and adults. Recent studies have demonstrated the pleiotropic action of vitamin D and identified its effects on multiple biological processes in addition to bone health. VDD is more prevalent in chronic childhood conditions such as long-standing systemic illnesses affecting the renal, liver, gastrointestinal, skin, neurologic and musculoskeletal systems. VDD superimposed on the underlying disease process and treatments that can adversely affect bone turnover can all add to the disease burden in these groups of children. The current review outlines the causes and mechanisms underlying poor bone health in certain groups of children and young people with chronic diseases with an emphasis on the proactive screening and treatment of VDD.


Assuntos
Osteomalacia , Raquitismo , Deficiência de Vitamina D , Adulto , Criança , Humanos , Adolescente , Deficiência de Vitamina D/diagnóstico , Raquitismo/etiologia , Raquitismo/prevenção & controle , Vitamina D/metabolismo , Osso e Ossos/metabolismo , Osteomalacia/complicações , Vitaminas
14.
Biomed Mater ; 18(4)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144422

RESUMO

Increased life expectancy has resulted in an increase in osteoporosis incidence worldwide. The coupling of angiogenesis and osteogenesis is indispensable for bone repair. Although traditional Chinese medicine (TCM) exerts therapeutic effects on osteoporosis, TCM-related scaffolds, which focus on the coupling of angiogenesis and osteogenesis, have not yet been used for the treatment of osteoporotic bone defects.Panax notoginsengsaponin (PNS), the active ingredient ofPanax notoginseng, was added to a poly (L-lactic acid) (PLLA) matrix. Osteopractic total flavone (OTF), the active ingredient ofRhizoma Drynariae, was encapsulated in nano-hydroxyapatite/collagen (nHAC) and added to the PLLA matrix. Magnesium (Mg) particles were added to the PLLA matrix to overcome the bioinert character of PLLA and neutralize the acidic byproducts generated by PLLA. In this OTF-PNS/nHAC/Mg/PLLA scaffold, PNS was released faster than OTF. The control group had an empty bone tunnel; scaffolds containing OTF:PNS = 100:0, 50:50, and 0:100 were used as the treatment groups. Scaffold groups promoted new vessel and bone formation, increased the osteoid tissue, and suppressed the osteoclast activity around osteoporotic bone defects. Scaffold groups upregulated the expression levels of angiogenic and osteogenic proteins. Among these scaffolds, the OTF-PNS (50:50) scaffold exhibited a better capacity for osteogenesis than the OTF-PNS (100:0 and 0:100) scaffolds. Activation of the bone morphogenic protein (BMP)-2/BMP receptor (BMPR)-1A/runt-related transcription factor (RUNX)-2signaling pathway may be a possible mechanism for the promotion of osteogenesis. Our study demonstrated that the OTF-PNS/nHAC/Mg/PLLA scaffold could promote osteogenesis via the coupling of angiogenesis and osteogenesis in osteoporotic rats with bone defects, and activating theBMP-2/BMPR1A/RUNX2signaling pathway may be an osteogenesis-related mechanism. However, further experiments are necessary to facilitate its practical application in the treatment of osteoporotic bone defects.


Assuntos
Osteogênese , Osteoporose , Ratos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais , Osso e Ossos/metabolismo , Poliésteres/farmacologia , Osteoporose/terapia , Osteoporose/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 14(3): 1349-1364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076950

RESUMO

BACKGROUND: The progressive deterioration of tissue-tissue crosstalk with aging causes a striking impairment of tissue homeostasis and functionality, particularly in the musculoskeletal system. Rejuvenation of the systemic and local milieu via interventions such as heterochronic parabiosis and exercise has been reported to improve musculoskeletal homeostasis in aged organisms. We have shown that Ginkgolide B (GB), a small molecule from Ginkgo biloba, improves bone homeostasis in aged mice by restoring local and systemic communication, implying a potential for maintaining skeletal muscle homeostasis and enhancing regeneration. In this study, we investigated the therapeutic efficacy of GB on skeletal muscle regeneration in aged mice. METHODS: Muscle injury models were established by barium chloride induction into the hind limb of 20-month-old mice (aged mice) and into C2C12-derived myotubes. Therapeutic efficacy of daily administrated GB (12 mg/kg body weight) and osteocalcin (50 µg/kg body weight) on muscle regeneration was assessed by histochemical staining, gene expression, flow cytometry, ex vivo muscle function test and rotarod test. RNA sequencing was used to explore the mechanism of GB on muscle regeneration, with subsequent in vitro and in vivo experiments validating these findings. RESULTS: GB administration in aged mice improved muscle regeneration (muscle mass, P = 0.0374; myofiber number/field, P = 0.0001; centre nucleus, embryonic myosin heavy chain-positive myofiber area, P = 0.0144), facilitated the recovery of muscle contractile properties (tetanic force, P = 0.0002; twitch force, P = 0.0005) and exercise performance (rotarod performance, P = 0.002), and reduced muscular fibrosis (collagen deposition, P < 0.0001) and inflammation (macrophage infiltration, P = 0.03). GB reversed the aging-related decrease in the expression of osteocalcin (P < 0.0001), an osteoblast-specific hormone, to promote muscle regeneration. Exogenous osteocalcin supplementation was sufficient to improve muscle regeneration (muscle mass, P = 0.0029; myofiber number/field, P < 0.0001), functional recovery (tetanic force, P = 0.0059; twitch force, P = 0.07; rotarod performance, P < 0.0001) and fibrosis (collagen deposition, P = 0.0316) in aged mice, without an increased risk of heterotopic ossification. CONCLUSIONS: GB treatment restored the bone-to-muscle endocrine axis to reverse aging-related declines in muscle regeneration and thus represents an innovative and practicable approach to managing muscle injuries. Our results revealed the critical and novel role of osteocalcin-GPRC6A-mediated bone-to-muscle communication in muscle regeneration, which provides a promising therapeutic avenue in functional muscle regeneration.


Assuntos
Osso e Ossos , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Osso e Ossos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
Nutrients ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904234

RESUMO

Phosphorus is an essential micromineral with a key role in cellular metabolism and tissue structure. Serum phosphorus is maintained in a homeostatic range by the intestines, bones, and kidneys. This process is coordinated by the endocrine system through the highly integrated actions of several hormones, including FGF23, PTH, Klotho, and 1,25D. The excretion kinetics of the kidney after diet phosphorus load or the serum phosphorus kinetics during hemodialysis support that there is a "pool" for temporary phosphorus storage, leading to the maintenance of stable serum phosphorus levels. Phosphorus overload refers to a state where the phosphorus load is higher than is physiologically necessary. It can be caused by a persistently high-phosphorus diet, renal function decline, bone disease, insufficient dialysis, and inappropriate medications, and includes but is not limited to hyperphosphatemia. Serum phosphorus is still the most commonly used indicator of phosphorus overload. Trending phosphorus levels to see if they are chronically elevated is recommended instead of a single test when judging phosphorus overload. Future studies are needed to validate the prognostic role of a new marker or markers of phosphorus overload.


Assuntos
Fósforo na Dieta , Insuficiência Renal Crônica , Humanos , Fósforo , Rim/metabolismo , Fósforo na Dieta/metabolismo , Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
17.
Altern Ther Health Med ; 29(1): 85-89, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36480682

RESUMO

Background: Type 2 diabetes (T2D) and osteoporosis are both diseases with a high clinical incidence. Among the population with diabetes, T2D accounts for approximately 90%. With the change in people's eating habits and lifestyles, the incidence rate is gradually increasing. Aim: We aimed to explore the relationship between the change in the Geriatric Nutritional Risk Index (GNRI) and the change in bone metabolism index parameters in elderly male patients with T2D and the occurrence of osteoporosis. Methods: A total of 290 elderly male patients with type 2 diabetes (T2D) diagnosed in North China University of Science and Technology Affiliated Hospital from October 2019 to February 2022 were selected for GNRI evaluation. Of these patients, 148 with a GNRI > 98 (the normal group) and 142 with a GNRI ≤ 98 (the risk group) were selected for the study. The levels of 1,25-hydroxyvitamin D3 [1,25 (OH) 2D3], type 1 collagen N-terminal propeptide (P1NP), serum type 1 collagen C-terminal peptide hinge (S-CTX), osteocalcin (OC) and serum bone alkaline phosphatase (BALP) in the 2 groups were detected and compared. A dual-energy bone mineral density instrument was used to detect the bone mineral density (BMD) in the 2 groups. The logistic regression model was used to analyze the relationship between the occurrence of osteoporosis and indicators such as GNRI, and the receiver operating characteristic (ROC) curve was drawn to analyze the value of GNRI in predicting osteoporosis in elderly patients with T2D. Results: The 1,25(OH)2D3 and P1NP levels in the risk group were lower than in the normal group, and the serum S-CTX and BALP levels in the risk group were higher than in the normal group; the differences were statistically significant (P <.05). The average BMD values of femoral neck, femur trochanter, Ward triangle and lumbar spine in the risk group were lower than in the normal group; the differences were statistically significant (P < .05). There were 70 patients with osteoporosis in the risk group and 9 patients with osteoporosis in the normal group. The difference in the detection rate of osteoporosis between the 2 groups was statistically significant (χ2 = 68.281; P = .000 < .05). The area under the curve (AUC) value under the ROC curve predicted by the GNRI for osteoporosis in elderly patients with T2D was 0.719, the sensitivity was 51.43% and the specificity was 97.26%. The logistic regression model showed that duration of diabetes, glycated hemoglobin A1c (HbA1c), S-CTX and BALP were independent risk factors for osteoporosis in elderly male patients with T2D (P < .05). Increased 1,25(OH)2D3, ALB and GNRI can reduce the risk for osteoporosis in elderly male patients with T2D (P < .05). Conclusion: GNRI can reflect the nutritional status of elderly male patients with T2D, which is related to some extent to osteoporosis caused by loss of bone mass.


Assuntos
Osso e Ossos , Diabetes Mellitus Tipo 2 , Estado Nutricional , Osteoporose , Idoso , Humanos , Masculino , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Densidade Óssea , Calcitriol , Colágeno Tipo I , Diabetes Mellitus Tipo 2/complicações , Osteoporose/epidemiologia
18.
Calcif Tissue Int ; 112(2): 178-196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35150288

RESUMO

Vitamin K, a cofactor for the γ-glutamyl carboxylase enzyme, is required for the post-translational activation of osteocalcin and matrix Gla protein, which play a key role in bone and muscle homeostasis. In vivo and in vitro models for osteoporosis and sarcopenia suggest the vitamin K could exert a positive effect in both conditions. In bone, it increases osteoblastogenesis, whilst decreases osteoclast formation and function. In muscle, it is associated with increased satellite cell proliferation and migration and might play a role in energy metabolism. Observational trials suggest that high levels of vitamin K are associated with increased bone mineral density and reduced fracture risk. However, interventional studies for vitamin K supplementation yielded conflicting results. Clinical trials in sarcopenia suggest that vitamin K supplementation could improve muscle mass and function. One of the main limitations on the vitamin K studies are the technical challenges to measure its levels in serum. Thus, they are obtained from indirect sources like food questionnaires, or levels of undercarboxylated proteins, which can be affected by other environmental or biological processes. Although current research appoints to a beneficial effect of vitamin K in bone and muscle, further studies overcoming the current limitations are required in order to incorporate this supplementation in the clinical management of patients with osteosarcopenia.


Assuntos
Sarcopenia , Vitamina K , Humanos , Vitamina K/metabolismo , Vitamina K/uso terapêutico , Densidade Óssea , Sarcopenia/tratamento farmacológico , Osso e Ossos/metabolismo , Osteocalcina/metabolismo , Músculos
19.
Int J Vitam Nutr Res ; 93(1): 85-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611985

RESUMO

Inulin, a dietary fibre found in the roots of many plants, has positive effects on health. It is particularly noteworthy due to its positive impact on calcium metabolism. Inulin has significant functions, such as improving calcium absorption through passive diffusion, bolstering calcium absorption via ion exchange and expanding the absorption surface of the colon by stimulating cell growth. In addition, inulin boosts calcium absorption by increasing calcium solubility, stimulating levels of calcium-binding protein expression and increasing useful microorganisms. It increases calbindin levels and stimulates transcellular active calcium transport. An inulin intake of least 8-10 g/day supports calcium absorption and total body bone mineral content/density in adolescents through its known mechanisms of action. It also significantly enhances calcium absorption and improves bone health in postmenopausal women and adult men. Sustained and sufficient inulin supplementation in adults has a positive effect on calcium metabolism and bone mineral density.


Assuntos
Cálcio , Inulina , Masculino , Adulto , Adolescente , Humanos , Feminino , Inulina/farmacologia , Inulina/química , Cálcio/metabolismo , Cálcio/farmacologia , Densidade Óssea , Osso e Ossos/metabolismo , Suplementos Nutricionais
20.
Front Endocrinol (Lausanne) ; 14: 1287140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665424

RESUMO

Bone health encompasses not only bone mineral density but also bone architecture and mechanical properties that can impact bone strength. While specific dietary interventions have been proposed to treat various diseases such as obesity and diabetes, their effects on bone health remain unclear. The aim of this review is to examine literature published in the past decade, summarize the effects of currently popular diets on bone health, elucidate underlying mechanisms, and provide solutions to neutralize the side effects. The diets discussed in this review include a ketogenic diet (KD), a Mediterranean diet (MD), caloric restriction (CR), a high-protein diet (HP), and intermittent fasting (IF). Although detrimental effects on bone health have been noticed in the KD and CR diets, it is still controversial, while the MD and HP diets have shown protective effects, and the effects of IF diets are still uncertain. The mechanism of these effects and the attenuation methods have gained attention and have been discussed in recent years: the KD diet interrupts energy balance and calcium metabolism, which reduces bone quality. Ginsenoside-Rb2, metformin, and simvastatin have been shown to attenuate bone loss during KD. The CR diet influences energy imbalance, glucocorticoid levels, and adipose tissue, causing bone loss. Adequate vitamin D and calcium supplementation and exercise training can attenuate these effects. The olive oil in the MD may be an effective component that protects bone health. HP diets also have components that protect bone health, but their mechanism requires further investigation. In IF, animal studies have shown detrimental effects on bone health, while human studies have not. Therefore, the effects of diets on bone health vary accordingly.


Assuntos
Densidade Óssea , Osso e Ossos , Dieta Cetogênica , Humanos , Densidade Óssea/efeitos dos fármacos , Dieta Cetogênica/efeitos adversos , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Restrição Calórica/métodos , Dieta , Animais , Dieta Mediterrânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA