Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
2.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342903

RESUMO

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Assuntos
Panax notoginseng , Plantas Medicinais , Nitrogênio/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Virology ; 591: 109983, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237218

RESUMO

As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Panax notoginseng , Saponinas , Saponinas/farmacologia , Panax notoginseng/genética , Panax notoginseng/metabolismo , Cucumovirus/genética , Cucumovirus/metabolismo , Raízes de Plantas , Homeostase , Infecções por Citomegalovirus/metabolismo
4.
Environ Pollut ; 337: 122578, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37726032

RESUMO

Heavy metal(loid)-contaminated available arable land seriously affects crop development and growth. Engineered nanomaterials have great potential in mitigating toxic metal(loid) stress in plants. However, there are few details of nanoparticles (NPs) involved in Panax notoginseng response to cadmium (Cd) and arsenic (As). Herein, integrating physiological and metabolomic analyses, we investigated the effects of Fe3O4 NPs on plant growth and Cd/As responses in P. notoginseng. Cd/As treatment caused severe growth inhibition. However, foliar application of Fe3O4 NPs increased beneficial elements in the roots and/or leaves, decreased Cd/As content by 10.38% and 20.41% in the roots, reduced membrane damage and regulated antioxidant enzyme activity, thereby alleviating Cd/As-induced growth inhibition, as indicated by increased shoot fresh weight (FW), the rootlet length and root FW by 40.14%, 15.74%, and 46.70% under Cd stress and promoted the shoot FW by 27.00% under As toxicity. Metabolomic analysis showed that 227 and 295 differentially accumulated metabolites (DAMs) were identified, and their accumulation patterns were classified into 8 and 6 clusters in the roots and leaves, respectively. Fe3O4 NPs altered metabolites significantly involved in key pathways, including amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis and phenylalanine metabolism, thus mediating the trade-off between plant growth and defense under stress. Interestingly, Fe3O4 NPs recovered more Cd/As-induced DAMs to normal levels, further supporting that Fe3O4 NPs positively affected seedling growth under metal(loid)s stress. In addition, Fe3O4 NPs altered terpenoids when the seedlings were subjected to Cd/As stress, thus affecting their potential medicinal value. This study provides insights into using nanoparticles to improve potential active ingredients of medicinal plants in metal(loid)-contaminated areas.


Assuntos
Arsênio , Nanopartículas , Panax notoginseng , Poluentes do Solo , Cádmio/metabolismo , Arsênio/metabolismo , Panax notoginseng/metabolismo , Plantas/metabolismo , Plântula , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
5.
PeerJ ; 11: e14933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846464

RESUMO

Nitrogen (N) is an important macronutrient and is comprehensively involved in the synthesis of secondary metabolites. However, the interaction between N supply and crop yield and the accumulation of effective constituents in an N-sensitive medicinal plant Panax notoginseng (Burkill) F. H. Chen is not completely known. Morphological traits, N use and allocation, photosynthetic capacity and saponins accumulation were evaluated in two- and three-year-old P. notoginseng grown under different N regimes. The number and length of fibrous root, total root length and root volume were reduced with the increase of N supply. The accumulation of leaf and stem biomass (above-ground) were enhanced with increasing N supply, and LN-grown plants had the lowest root biomass. Above-ground biomass was closely correlated with N content, and the relationship between root biomass and N content was negatives in P. notoginseng (r = -0.92). N use efficiency-related parameters, NUE (N use efficiency, etc.), NC (N content in carboxylation system component) and P n (the net photosynthetic rate) were reduced in HN-grown P. notoginseng. SLN (specific leaf N), Chl (chlorophyll), NL (N content in light capture component) increased with an increase in N application. Interestingly, root biomass was positively correlated with NUE, yield and P n. Above-ground biomass was close negatively correlated with photosynthetic N use efficiency (PNUE). Saponins content was positively correlated with NUE and P n. Additionally, HN improved the root yield of per plant compared with LN, but reduced the accumulation of saponins, and the lowest yield of saponins per unit area (35.71 kg·hm-2) was recorded in HN-grown plants. HN-grown medicinal plants could inhibit the accumulation of root biomass by reducing N use and photosynthetic capacity, and HN-induced decrease in the accumulation of saponins (C-containing metabolites) might be closely related to the decline in N efficiency and photosynthetic capacity. Overall, N excess reduces the yield of root and C-containing secondary metabolites (active ingredient) in N-sensitive medicinal species such as P. notoginseng.


Assuntos
Panax notoginseng , Plantas Medicinais , Saponinas , Plantas Medicinais/metabolismo , Saponinas/metabolismo , Panax notoginseng/metabolismo , Nitrogênio/metabolismo , Biomassa
6.
J Agric Food Chem ; 71(8): 3852-3861, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790033

RESUMO

Ginsenosides are the main bioactive ingredients in plants of the genus Panax. Vina-ginsenoside R7 (VG-R7) is one of the rare high-value ginsenosides with health benefits. The only reported method for preparing VG-R7 involves inefficient and low-yield isolation from highly valuable natural resources. Notoginsenoside Fc (NG-Fc) isolated in the leaves and stems of Panax notoginseng is a suitable substrate for the preparation of VG-R7 via specific hydrolysis of the outside xylose at the C-20 position. Here, we first screened putative enzymes belonging to the glycoside hydrolase (GH) families 1, 3, and 43 and found that KfGH01 can specifically hydrolyze the ß-d-xylopyranosyl-(1 → 6)-ß-d-glucopyranoside linkage of NG-Fc to form VG-R7. The I248F/Y410R variant of KfGH01 obtained by protein engineering displayed a kcat/KM value (305.3 min-1 mM-1) for the reaction enhanced by approximately 270-fold compared with wild-type KfGH01. A change in the shape of the substrate binding pockets in the mutant allows the substrate to sit closer to the catalytic residues which may explain the enhanced catalytic efficiency of the engineered enzyme. This study identifies the first glycosidase for bioconversion of a ginsenoside with more than four sugar units, and it will inspire efforts to investigate other promising enzymes to obtain valuable natural products.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Ginsenosídeos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Panax/química , Panax notoginseng/metabolismo , Hidrólise
7.
J Agric Food Chem ; 71(1): 963-973, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548634

RESUMO

Ginsenosides, the main bioactive ingredients of the Panax genus, are dammarane or oleanane triterpenoids with glycosylated modifications at C3/C6/C20 hydroxyls or C28 carboxyl, and their diverse glycosylation pattern has attracted great attention. However, the biosynthesis of some important saponins is still unclear. In this study, six UGTs were characterized, two of which were novel. PnUGT71A3 catalyzes not only the C6 hydroxyl glycosylation of protopanaxatriol (PPT) and F1 to form Rh1 and Rg1, respectively, but also the C20 hydroxyl glycosylation of protopanaxadiol (PPD)-type Rg3 to generate Rd. Especially, PnUGT94M1 is UDP-ß-l-rhamnose (UDP-Rha)-dependent, regioselectively catalyzing the C2' hydroxyl rhamnosylation of C6 glucose of the PPT-type ginsenosides Rg1 and Rh1 to generate ginsenosides Re and Rg2, respectively. Site-directed mutagenesis showed that His21, Asp120, Ser363, and Pro372 are key residues, and the triple mutant (G344S/G345S/L346T) highly improved the activity toward Rg1 and Rh1. The findings in this study, perfect main ginsenosides biosynthetic pathways in the Panax genus, expand the biocatalyst toolbox for ginsenoside production and show that the PSPG motif is one of the options to modify UGTs to improve their activities.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Glicosiltransferases/metabolismo , Panax notoginseng/metabolismo , Vias Biossintéticas , Glicosilação , Panax/química
8.
J Integr Neurosci ; 21(4): 109, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35864761

RESUMO

BACKGROUND: Peripheral nerve regeneration is a coordinated process of Schwann cell (SC) reprogramming and intrinsic neuronal growth program activation. Panaxydol (PND) is a strong biologically active traditional Chinese medicine monomer extracted from Panax notoginseng rhizomes. In vitro, PND protects neurons and SCs from injury and stimulates the expression and secretion of neurotrophic factors (NTFs) by SCs. We hypothesized that PND may also promote peripheral nerve regeneration in adult animals. METHODS: PND (10 mg/kg body weight) was injected intraperitoneally into the Sprague-Dawley (SD) rats for two consecutive weeks after sciatic nerve transection. The morphology of the repaired sciatic nerve was evaluated after 16 weeks, and sensory and motor function recovery was evaluated using functional and behavioral techniques. RESULTS: PND was biologically safe at an injection dose of 10 mg/kg/day. After 14 days, it significantly increased the myelination of regenerated nerve fibers, and promoted sensory and motor function recovery. In the early stage of injury, PND significantly upregulated the mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptors in distal injured nerves, which may represent a possible mechanism by which PND promotes nerve regeneration in vivo. CONCLUSIONS: Our study demonstrated that PND leads to sensory and motor recovery in a sciatic nerve transection model rat. Furthermore, we showed that BDNF mRNA level was significantly increased in the injured distal nerve, potentially contributing to the functional recovery. Further research is warrantied to examine whether direct injection is a more efficient method to increase BDNF expression compared to an exogenous BDNF administration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Panax notoginseng , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Di-Inos , Álcoois Graxos , Regeneração Nervosa/fisiologia , Panax notoginseng/genética , Panax notoginseng/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Nervo Isquiático/lesões
9.
Gene ; 841: 146768, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905849

RESUMO

Basic leucine zipper (bZIP) transcription factors play an irreplaceable position in the regulation of plant secondary metabolism, growth and development, and resistance to abiotic stress. Panax notoginseng is a traditional medicinal plant in China, but the systematic identification and the resistance of Panax notoginseng bZIP (PnbZIP) family under nitrogen stress have not been reported before, considering the excessive application of N fertilizers. In this study, we conducted a genome-wide identification of the PnbZIP family and analyzed its phylogeny, tissue selectivity, and abiotic resistence. 74 PnbZIPs were distributed on 12 chromosomes and 8 were not successfully located. Through phylogenetic analysis of Arabidopsis and Panax notoginseng, we divided them into 14 subgroups. In the same subgroup, bZIPs had similiar intron/exon structure and conserved motifs. In the analysis of chromosome structure, two PnbZIP genes were duplicated in tandem on chromosome 3. Intraspecific collinearity analysis showed that 28 PnbZIPs participated in segmental replication. Each PnbZIP promoter contained at least one stress response element or stress-related hormone response element. RNA-seq and qRT-PCR methods were used to analyze the expression patterns of the PnbZIP gene in different tissues (roots, flowers, and leaves) and under different nitrogen stresses. The results showed that the PnbZIP gene had the highest expression level in flowers and reflected tissue-specific expressions. Meanwhile, under the stress of ammonium nitrogen fertilizer and nitrate nitrogen fertilizer, PnbZIPs in roots were differently expressed. 10 PnbZIP stress-responsive genes were screened for significant expression, among which PnbZIP46 was significantly up-regulated, which could be a candidate gene for resistance to Nitrogen stress. This study laid the foundation for functional identification of PnbZIPs and improved the cultivation of Panax notoginseng.


Assuntos
Regulação da Expressão Gênica de Plantas , Panax notoginseng , Algoritmos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fertilizantes , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Panax notoginseng/genética , Panax notoginseng/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
10.
ACS Synth Biol ; 11(7): 2394-2404, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687875

RESUMO

Panax notoginseng is one of the most famous valuable medical plants in China, and its broad application in clinical treatment has an inseparable relationship with the active molecules, ginsenosides. Ginsenosides are glycoside compounds that have varied structures for the diverse sugar chain. Although extensive work has been done, there are still unknown steps in the biosynthetic pathway of ginsenosides. Here, we screened candidate glycosyltransferase genes based on the previous genome and transcriptome data of P. notoginseng and cloned the full length of 27 UGT genes successfully. Among them, we found that PnUGT33 could catalyze different ginsenoside substrates to produce higher polarity rare ginsenosides by extending the sugar chain. We further analyzed the enzymatic kinetics and predicted the catalytic mechanism of PnUGT33 by simulating molecular docking. After that, we reconstructed the biosynthetic pathway of rare ginsenoside Rg3 and gypenoside LXXV in yeast. By combining the Golden Gate method and overexpressing the UDPG biosynthetic genes, we further improved the yield of engineering yeast strain. Finally, the shake-flask culture yield of Rg3 reached 51 mg/L and the fed-batch fermentation yield of gypenoside LXXV reached 94.5 mg/L, which was the first and highest record.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Ginsenosídeos/genética , Ginsenosídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Engenharia Metabólica/métodos , Simulação de Acoplamento Molecular , Panax/química , Panax/genética , Panax/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas , Açúcares/metabolismo , Triterpenos
11.
J Plant Physiol ; 275: 153756, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767909

RESUMO

The main active ingredients of the traditional Chinese medicinal plant, Panax notoginseng, are the Panax notoginseng saponins (PNS). They can be synthesized via the mevalonate pathway; PnSS and PnSE1 are the key rate-limiting enzymes in this pathway. In this study, an interaction between PnMYB2 and the key enzymes was identified and characterized from the P. notoginseng cDNA library using the Y1H technique. Subsequently, X-α-gal color reaction confirmed the interaction between PnMYB2 and the upstream sequences of PnSS and PnSE1 promoters. Full-length cDNA sequence of PnMYB2 was isolated and characterized. PnMYB2 has an open reading frame of 864 bp, encoding 287 amino acids. 3D structural analysis of PnMYB2 indicated that its structure was similar to that of the template. Phylogenetic analysis revealed that PnMYB2 and PgMYB2 are highly homologous and belong to the R2R3 MYB transcription factor (TF). Subcellular localization analysis showed that PnMYB2 was localized in the nucleus. The recombinant protein PnMYB2 was successfully obtained through prokaryotic expression and was confirmed to be an inclusion body protein. Furthermore, electrophoretic mobility shift assay (EMSA) experiments demonstrated that PnMYB2 specifically binds to MYB core and AC-rich elements. This study provides a theoretical basis for transcriptional regulation of saponin biosynthesis in P. notoginseng.


Assuntos
Panax notoginseng , Plantas Medicinais , Saponinas , Panax notoginseng/genética , Panax notoginseng/metabolismo , Filogenia , Plantas Medicinais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
ACS Synth Biol ; 11(2): 770-779, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35107265

RESUMO

UDP-glycosyltransferase (UGT)-mediated glycosylation is a common modification in triterpene saponins, which exhibit a wide range of bioactivities and important pharmacological effects. However, few UGTs involved in saponin biosynthesis have been identified, limiting the biosynthesis of saponins. In this study, an efficient heterologous expression system was established for evaluating the UGT-mediated glycosylation process of triterpene saponins. Six UGTs (UGTPn17, UGTPn42, UGTPn35, UGTPn87, UGTPn19, and UGTPn12) from Panax notoginseng were predicted and found to be responsible for efficient and direct enzymatic biotransformation of 21 triterpenoid saponins via 26 various glycosylation reactions. Among them, UGTPn87 exhibited promiscuous sugar-donor specificity of UDP-glucose (UDP-Glc) and UDP-xylose (UDP-Xyl) by catalyzing the elongation of the second sugar chain at the C3 or/and C20 sites of protopanaxadiol-type saponins with a UDP-Glc or UDP-Xyl donor, as well as at the C20 site of protopanaxadiol-type saponins with a UDP-Glc donor. Two new saponins, Fd-Xyl and Fe-Xyl, were generated by catalyzing the C3-O-Glc xylosylations of notoginsenoside Fd and notoginsenoside Fe when incubated with UGTPn87. Moreover, the complete biosynthetic pathways of 17 saponins were elucidated, among which notoginsenoside L, vinaginsenoside R16, gypenoside LXXV, and gypenoside XVII were revealed in Panax for the first time. A yeast cell factory was constructed with a yield of Rh2 at 354.69 mg/L and a glycosylation ratio of 60.40% in flasks. Our results reveal the biosynthetic pathway of a group of saponins in P. notoginseng and provide a theoretical basis for producing rare and valuable saponins, promoting their industrial application in medicine and functional foods.


Assuntos
Ginsenosídeos , Panax notoginseng , Panax , Saponinas , Triterpenos , Ginsenosídeos/metabolismo , Glicosiltransferases/metabolismo , Panax/metabolismo , Panax notoginseng/metabolismo , Difosfato de Uridina/metabolismo
13.
Phytopathology ; 112(6): 1323-1334, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34844417

RESUMO

Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.


Assuntos
Fusarium , Panax notoginseng , Ciclopentanos , Resistência à Doença/genética , Fusarium/metabolismo , Oxilipinas , Panax notoginseng/genética , Panax notoginseng/metabolismo , Fotossíntese , Doenças das Plantas/genética , Transdução de Sinais , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
BMC Plant Biol ; 21(1): 447, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615481

RESUMO

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. RESULTS: In this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment. CONCLUSIONS: These results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Nitrogênio/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genoma , Genótipo , Filogenia
15.
Oxid Med Cell Longev ; 2021: 4722797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527173

RESUMO

Previous studies revealed a cardioprotective potential of Panax notoginseng to relieve acute myocardial infarction and focal cerebral ischemia-reperfusion. However, whether P. notoginseng protects endothelial function in diabetes and the underlying mechanisms remain to be explored. P. notoginseng contains several chemical components including saponins, which are commonly believed as the major bioactive ingredients. The present study was aimed to examine and compare the vaso-protective effects of the ethanolic extract of P. notoginseng (PNE) and total saponin (PNS). Both aortas and carotid arteries were isolated from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) with and without the presence of PNS and PNE. Diabetic model was established by feeding the mice with a high-fat diet (45% kcal% fat) for 12 weeks, while PNS and PNE were administrated by oral gavage at 20 mg/kg/day for another 4 weeks. Ex vivo exposure to high glucose impaired acetylcholine-induced endothelium-dependent relaxations in mouse aortas, decreased phosphorylation of AMPK and eNOS, and induced endoplasmic reticulum (ER) stress and oxidative stress. These effects were reversed by cotreatment of PNS and PNE with PNS being more potent. Furthermore, the vaso-protective effects were abolished by Compound C (AMPK inhibitor). Chronic treatment with PNS and PNE improved endothelium-dependent relaxations and alleviated ER stress and oxidative stress in aortas from high-fat diet-induced obese mice. PNE was more effective to improve glucose sensitivity and normalize blood pressure in diabetic mice. The present results showed that PNS and PNE reduced ER stress and oxidative stress and, subsequently, improved endothelial function in diabetes through AMPK activation. This study provides new inspiration on the therapeutic potential of P. notoginseng extract against vascular diseases associated with metabolic disorders.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Panax notoginseng/química , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Panax notoginseng/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Saponinas/química , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
16.
J Plant Physiol ; 263: 153466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216845

RESUMO

Panax notoginseng (Bruk.) FH Chen is a valuable traditional herb in China, with saponins being the main medicinal components in its roots. However, leaf diseases are a major factor limiting growth and production of P. notoginseng. Melatonin is a ubiquitous signaling molecule associated with abiotic stress resistance. In this study, we investigated the role of melatonin in leaf disease resistance of P. notoginseng in field conditions. Additionally, saponin concentrations were analyzed to evaluate the suitability of melatonin use in agricultural practice. Our results showed that exogenous application of melatonin promoted the endogenous phytomelatonin accumulation via upregulation of genes involved in its biosynthesis. The application of 10 µM melatonin decreased the incidence of leaf diseases (gray mold, round spot, and black spot) by about 40% compared with the solvent control, which might have been due to the increased expression of genes associated with immunity and disease resistance. Furthermore, concentrations of saponins and expression of their biosynthesis-related genes were significantly increased by melatonin. Taken together, the data presented here suggested that melatonin could be used in agricultural management of P. notoginseng because it increased leaf disease resistance and biosynthesis of saponins.


Assuntos
Resistência à Doença/fisiologia , Melatonina/metabolismo , Panax notoginseng/crescimento & desenvolvimento , Panax notoginseng/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Saponinas/biossíntese , China , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
17.
Plant Commun ; 2(1): 100113, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33511345

RESUMO

Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Ginsenosídeos/biossíntese , Ginsenosídeos/genética , Panax notoginseng/genética , Panax notoginseng/metabolismo , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Extratos Vegetais/biossíntese , Extratos Vegetais/genética , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma
18.
Mol Med Rep ; 22(6): 4743-4753, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173991

RESUMO

Treatment with Panax notoginseng saponin (PNS) can prevent neurological damage in middle cerebral artery occlusion model rats to promote recovery after a stroke. However, the exact molecular mechanisms are unknown and require further study. In the present study, mRNA sequencing was employed to investigate differential gene expression between model and sham groups, and between model and PNS­treated groups. Enrichment of gene data was performed using Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes database. Hub genes were identified and networks were constructed using Cytoscape that were further verified by reverse transcription­quantitative PCR. A total of 1,104 genes of interest were found, which included 690 upregulated and 414 downregulated genes that were identified when the model was compared with the sham group. Additionally, 817 genes of interest, which included 390 upregulated and 427 downregulated genes, were identified when the PNS­treated group was compared with the model group. There were 303 overlapping genes of interest between the analysis of model to sham groups, and the analysis of model to PNS­treated groups. The top 10 genes from the 303 aberrantly expressed genes of interest included ubiquitin conjugating enzyme E2 variant 2, small ubiquitin­related modifier 1, small RNA binding exonuclease protection factor La, Finkel­Biskis­Reilly murine sarcoma virus (FBR­MuSV) ubiquitously expressed, centrosomal protein 290 kDa, DNA­directed RNA polymerase II subunit K, cullin­4B, matrin­3 and vascular endothelial growth factor receptor 2. In conclusion, these genes may be important in the underlying mechanism of PNS treatment in ischemic stroke. Additionally, the present data provided novel insight into the pathogenesis of ischemic stroke.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , Saponinas/farmacologia , Animais , Isquemia Encefálica/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/genética , Masculino , Panax notoginseng/metabolismo , Raízes de Plantas/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Transcriptoma/genética
19.
Sci Rep ; 10(1): 15310, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943706

RESUMO

Panax notoginseng is one of the most widely used traditional Chinese herbs with particularly valued roots. Triterpenoid saponins are mainly specialized secondary metabolites, which medically act as bioactive components. Knowledge of the ginsenoside biosynthesis in P. notoginseng, which is of great importance in the industrial biosynthesis and genetic breeding program, remains largely undetermined. Here we combined single molecular real time (SMRT) and Second-Generation Sequencing (SGS) technologies to generate a widespread transcriptome atlas of P. notoginseng. We mapped 2,383 full-length non-chimeric (FLNC) reads to adjacently annotated genes, corrected 1,925 mis-annotated genes and merged into 927 new genes. We identified 8,111 novel transcript isoforms that have improved the annotation of the current genome assembly, of which we found 2,664 novel lncRNAs. We characterized more alternative splicing (AS) events from SMRT reads (20,015 AS in 6,324 genes) than Illumina reads (18,498 AS in 9,550 genes), which contained a number of AS events associated with the ginsenoside biosynthesis. The comprehensive transcriptome landscape reveals that the ginsenoside biosynthesis predominantly occurs in flowers compared to leaves and roots, substantiated by levels of gene expression, which is supported by tissue-specific abundance of isoforms in flowers compared to roots and rhizomes. Comparative metabolic analyses further show that a total of 17 characteristic ginsenosides increasingly accumulated, and roots contained the most ginsenosides with variable contents, which are extraordinarily abundant in roots of the three-year old plants. We observed that roots were rich in protopanaxatriol- and protopanaxadiol-type saponins, whereas protopanaxadiol-type saponins predominated in aerial parts (leaves, stems and flowers). The obtained results will greatly enhance our understanding about the ginsenoside biosynthetic machinery in the genus Panax.


Assuntos
Ginsenosídeos/biossíntese , Ginsenosídeos/genética , Panax notoginseng/genética , Transcriptoma/genética , Processamento Alternativo/genética , Flores/genética , Flores/metabolismo , Flores/fisiologia , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Ginsenosídeos/metabolismo , Anotação de Sequência Molecular/métodos , Panax/genética , Panax/metabolismo , Panax notoginseng/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , RNA-Seq/métodos , Rizoma/genética , Rizoma/metabolismo , Rizoma/fisiologia , Sapogeninas/metabolismo , Saponinas/genética , Saponinas/metabolismo , Sequenciamento do Exoma/métodos
20.
J Agric Food Chem ; 68(25): 6835-6844, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449854

RESUMO

Panax notoginseng saponins (PNSs) are the major health-beneficial components of P. notoginseng with very low oral bioavailability, which could be biotransformed by gut microbiota in vitro. However, in vivo biotransformation of PNS mediated by gut microbiota is not well known. This study aimed to characterize the in vivo metabolic profiles of PNS mediated by gut microbiota. The saponins and yielded metabolites in rat feces were identified and relatively quantified by ultra-performance liquid chromatography tandem/quadrupole time-of-flight mass spectrometry. Seventy-three PNS metabolites had been identified in the normal control group, but only 11 PNS metabolites were determined in the pseudo germ-free (GF) group. In addition, the main biotransformation pathway of PNS metabolism was hydrolytic and dehydration reactions. The results indicated that a significant metabolic difference was observed between the normal control group and pseudo GF group, while gut microbiota played a profound role in the biotransformation of PNS in vivo.


Assuntos
Bactérias/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal , Panax notoginseng/metabolismo , Saponinas/química , Saponinas/metabolismo , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biotransformação , Fezes/microbiologia , Masculino , Panax notoginseng/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA