Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575090

RESUMO

Three new sorbicillinoids sorbicatechols E-G (1-3), along with seven known compounds 4-10, were obtained from the ethanol extract of Penicillium sp. HS-11, a fungal endophyte of the medicinal plant Huperzia serrata. The structures of 1-3 were established by detailed interpretation of the spectroscopic data and their absolute configurations were established by comparative analyses of the ECD spectra. Sorbicatechol G (3) represented the first hybrid sorbicillinoid bearing a tetralone skeleton. In the in-vitro bioassay, trichodimerol (5) exhibited moderate inhibitory activity against the Escherichia coli ß-glucuronidase (EcGUS) with an IC50 value of 92.0 ± 9.4 µM.


Assuntos
Endófitos , Huperzia , Penicillium , Penicillium/química , Endófitos/química , Estrutura Molecular , Huperzia/microbiologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Metabolismo Secundário , China
2.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466647

RESUMO

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Assuntos
Antioxidantes , Canabidiol , Proliferação de Células , Canabidiol/farmacologia , Canabidiol/química , Humanos , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antifúngicos/farmacologia , Antifúngicos/química , Penicillium/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos
3.
Fitoterapia ; 175: 105906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479622

RESUMO

Nine metabolites, including three undescribed alkaloids pyripyropenes VW (1-2), penicioxa A (4), two previously reported pyripyropene A (3), oxaline (5), three grisephenone-type xanthone derivatives (6-8), and a diphenyl ether derivative 4-chloro-7,4'-dihydroxy-5,2'-dimethoxy-2-methylformate-6'-methybenzophone (9), were isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. Their structures were determined by spectroscopic analysis, ECD calculations, together with DP4+ probability analysis. Furthermore, all the isolated compounds were tested for cytotoxicity and anti-phytopathogenic fungal activities. Compounds 6-8 showed moderate cytotoxicity against tumor cell lines A549, with IC50 values ranging from 5.68 ± 0.21 to 9.71 ± 0.34 µg/mL, respectively.


Assuntos
Alcaloides , Penicillium , Penicillium/química , Estrutura Molecular , Humanos , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/química , China , Rhizophoraceae/microbiologia
4.
Arch Microbiol ; 206(3): 97, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349544

RESUMO

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.


Assuntos
Antineoplásicos , Cordyceps , Neoplasias , Penicillium , Humanos , Penicillium/genética , Carpóforos
5.
Fitoterapia ; 173: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286315

RESUMO

Citrisorbicillinol (1), along with six other known compounds (2-7), was isolated from an endphyte Penicillium citrinum ZY-2 of Plantago asiatica L. Citrisorbicillinol (1) was characterized as a skeletally unprecedented hybrid sorbicillinoid, and its unique framework is likely formed by intermolecular [4 + 2] cycloaddition between intermediates derived from citrinin and sorbicillinoid biosynthetic gene clusters. Compounds 1 and 2 demonstrated to promote osteoblastic differentiation in MC3T3-E1 cells, and to be osteogenic in the prednisolone induced osteoporotic zebrafish. Compounds 3-7 exhibited moderate cytotoxicity against four human cancer cell lines.


Assuntos
Citrinina , Penicillium , Animais , Humanos , Estrutura Molecular , Peixe-Zebra
6.
Sci Rep ; 14(1): 2547, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291218

RESUMO

Over the past years, the assessment of myco-fabricated selenium nanoparticles (SeNPs) properties, is still in its infancy. Herein, we have highly stable myco-synthesized SeNPs using molecularly identified soil-isolated fungus; Penicillium tardochrysogenum OR059437; (PeSeNPs) were clarified via TEM, EDX, UV-Vis spectrophotometer, FTIR and zeta potential. The therapeutic efficacy profile will be determined, these crystalline PeSeNPs were examined for antioxidant, antimicrobial, MIC, and anticancer potentials, indicating that, PeSeNPs have antioxidant activity of (IC50, 109.11 µg/mL) using DPPH free radical scavenging assay. Also, PeSeNPs possess antimicrobial potential against Penicillium italicum RCMB 001,018 (1) IMI 193,019, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 4330 and Porphyromonas gingivalis RCMB 022,001 (1) EMCC 1699; with I.Z. diameters and MIC; 16 ± 0.5 mm and MIC 500 µg/ml, 11.9 ± 0.6 mm, 500 µg/ml and 15.9±0.6 mm, 1000 µg/ml, respectively. Additionally, TEM micrographs were taken for P. italicum treated with PeSeNPs, demonstrating the destruction of hyphal membrane and internal organelles integrity, pores formation, and cell death. PeSeNP alone in vivo and combined with a near-infrared physiotherapy lamp with an energy intensity of 140 mW/cm2 showed a strong therapeutic effect against cancer cells. Thus, PeSeNPs represent anticancer agents and a suitable photothermal option for treating different kinds of cancer cells with lower toxicity and higher efficiency than normal cells. The combination therapy showed a very large and significant reduction in tumor volume, the tumor cells showed large necrosis, shrank, and disappeared. There was also improvement in liver ultrastructure, liver enzymes, and histology, as well as renal function, urea, and creatinine.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Penicillium , Selênio , Selênio/farmacologia , Selênio/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Nanopartículas/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia
7.
Huan Jing Ke Xue ; 45(1): 543-554, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216503

RESUMO

This study aimed to clarify the effect of long-term continuous cropping of pepper on soil fungal community structure, reveal the mechanism of continuous cropping obstacles, and provide a theoretical basis for the ecological safety and sustainable development of pepper industry. We took the pepper continuous cropping soil in the vegetable greenhouse planting base of Tongren City as the research object. The diversity and community structure of fungi in farmland soil were analyzed using Illumina MiSeq high-throughput sequencing, the responses of soil physio-chemical properties and fungal community characteristics to long-term continuous pepper cropping were discussed, and the relationships between the characteristics of fungal community structure and environmental factors were determined using CCA and correlation network analysis. The results showed that with the extension of pepper continuous cropping years, the soil pH value and organic matter (OM) content decreased, total phosphorus (TP) and available phosphorus (AP) contents increased, hydrolyzed nitrogen (AN) and available potassium (AK) contents decreased first and then increased, and total nitrogen (TN) and total potassium (TK) contents did not change significantly. Long-term continuous cropping decreased the Chao1 index and observed species index and decreased the Shannon index and Simpson index. The change in continuous cropping years had a significant effect on the relative abundance of soil fungal dominant flora. At the phylum level, the relative abundance of Mortierellomycota decreased with the extension of pepper continuous cropping years, the relative abundance of Ascomycota increased first and then decreased, and the relative abundance of Basidiomycota decreased first and then increased. At the genus level, with the increasing of pepper continuous cropping years, the relative abundance of Fusarium increased, and the relative abundance of Mortierella and Penicillium decreased. In addition, long-term continuous cropping simplified the soil fungal symbiosis network. CCA analysis indicated that pH, OM, TN, AN, AP, and AK were the driving factors of soil fungal community structure, and correlation network analysis showed that pH, OM, TN, TP, TK, AN, AP, and AK were the driving factors of soil fungal community structure, including Fusarium, Lophotrichus, Penicillium, Mortierella, Botryotrichum, Staphylotrichum, Plectosphaerella, and Acremonium. In conclusion, continuous cropping changed the soil physical and chemical properties, affected the diversity and community structure of the soil fungal community, changed the interaction between microorganisms, and destroyed the microecological balance of the soil, which might explain obstacles associated with continuous cropped pepper.


Assuntos
Fusarium , Micobioma , Penicillium , Solo/química , Microbiologia do Solo , Produtos Agrícolas , Nitrogênio , Fósforo , Potássio
8.
J Nat Med ; 78(1): 78-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897512

RESUMO

Citrinin derivatives have been found to have various pharmacological activities, such as anti-inflammatory, anti-tumor, and antioxidant effects. Dicitrinone G (DG) was a new citrinin dimer isolated from marine-derived fungus Penicillium sp. GGF 16-1-2 which has potential activity. Here, we aim to investigate whether DG has anti-pancreatic cancer activity. In xenograft tumor model, 2 × 106 BXPC-3 cells were injected into the hind flank of NU/NU nude mice by subcutaneously for 2 weeks followed by treating with DG (0.25, 0.5, 1 mg/kg) and 5-FU (30 mg/kg) for 4 weeks. Tumor volume and weight were measured, and the expression of CD31, IL-18, NLRP3, and Caspase-1 in tumor tissue were detected. In vitro, HUVECs were treated with conditioned medium (CM) derived from BXPC-3 cells, the effects of DG on angiogenesis were detected by tube formation and western blot analysis. In vivo studies showed that the tumor growth and angiogenesis were greatly suppressed. The tumor weight inhibition rates of DG and 5-FU groups were about 42.36%, 38.94%, 43.80%, and 31.88%. Furthermore, the expression of CD31 and Caspase-1 were decreased. In vitro, CM derived from BXPC-3 cells which treated with DG could inhibit the tube formation and expression of pro-angiogenic NICD in HUVECs. Our study suggests that DG could suppress angiogenesis via the NLRP3/IL-18 pathway and may have the potential to inhibit tumor development.


Assuntos
Citrinina , Penicillium , Animais , Camundongos , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Camundongos Nus , Angiogênese , Caspase 1/metabolismo , Fluoruracila/farmacologia
9.
Int J Food Microbiol ; 411: 110511, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043476

RESUMO

The co-occurrence of fungi and mycotoxins in various foods has been frequently reported in many countries, posing a serious threat to the health and safety of consumers. In this study, the mycobiota in five types of commercial bee pollen samples from China were first revealed by DNA metabarcoding. Meanwhile, the content of total aflatoxins in each sample was investigated by high-performance liquid chromatography with fluorescence detection. The results demonstrated that Cladosporium (0.16 %-89.29 %) was the most prevalent genus in bee pollen, followed by Metschnikowia (0-81.12 %), unclassified genus in the phylum Ascomycota (0-81.13 %), Kodamaea (0-73.57 %), and Penicillium (0-36.13 %). Meanwhile, none of the assayed aflatoxins were determined in the 18 batches of bee pollen samples. In addition, the fungal diversity, community composition, and trophic mode varied significantly among five groups. This study provides comprehensive information for better understanding the fungal communities and aflatoxin residues in bee pollen from different floral origins in China.


Assuntos
Aflatoxinas , Micotoxinas , Penicillium , Animais , Abelhas , Aflatoxinas/análise , Micotoxinas/análise , Penicillium/genética , Cromatografia Líquida de Alta Pressão/métodos , Pólen/microbiologia , Contaminação de Alimentos/análise , Fungos
10.
Int J Biol Macromol ; 254(Pt 3): 127966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944726

RESUMO

Endo-1,4-ß-galactanase is an indispensable tool for preparing prebiotic ß-galacto-oligosaccharides (ß-GOS) from pectic galactan resources. In the present study, a novel endo-1,4-ß-galactanase (PoßGal53) belonging to glycoside hydrolase family 53 from Penicillium oxalicum sp. 68 was cloned and expressed in Pichia pastoris GS115. Upon purification by affinity chromatography, recombinant PoßGal53 exhibited a single band on SDS-PAGE with a molecular weight of 45.0 kDa. Using potato galactan as substrate, PoßGal53 showed optimal reaction conditions of pH 4.0, 40 °C, and was thermostable, retaining >80 % activity after incubating below 45 °C for 12 h. Significantly, PoßGal53 exhibited relatively conserved substrate specificity for (1 â†’ 4)-ß-D-galactan with an activity of 6244 ± 282 U/mg. In this regard, the enzyme is in effect the most efficient endo-1,4-ß-galactanase identified to date. By using PoßGal53, ß-GOS monomers were prepared from potato galactan and separated using medium pressure liquid chromatography. HPAEC-PAD, MALDI-TOF-MS and ESI-MS/MS analyses demonstrated that these ß-GOS species ranged from 1,4-ß-D-galactobiose to 1,4-ß-D-galactooctaose (DP 2-8) with high purity. This work provides not only a highly active tool for enzymatic degradation of pectic galactan, but an efficient protocol for preparing ß-GOS.


Assuntos
Penicillium , Espectrometria de Massas em Tandem , Glicosídeo Hidrolases/metabolismo , Penicillium/genética , Penicillium/metabolismo , Galactanos/química , Oligossacarídeos/metabolismo , Pectinas , Especificidade por Substrato
11.
Environ Sci Technol ; 58(1): 603-616, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109294

RESUMO

The mechanisms of the P. oxalicum SL2-mediated microbial community on phosphorus solubilization and Pb stabilization were investigated through a 90-day soil experiment. In the treatments inoculated with P. oxalicum SL2, the amount of P. oxalicum SL2-GFP remained at 77.8%-138.6% of the initial inoculation amount after 90 days, and the available phosphorus (AP) content increased 21.7%-40.8% while EDTA-Pb decreased 29.9%-43.2% compared with CK treatment. SEM-EDS results showed that P. oxalicum SL2 changed the agglomeration degree of microaggregates and promoted the combination of Pb with C and O elements. These phenomena were enhanced when applied with Ca3(PO4)2. Microbial community analysis showed that P. oxalicum SL2 improved soil microbial activity, in which the fungi absolute abundance increased about 15 times within 90 days. Correlation analyses and a partial least-squares path model showed that the activation of Penicillium, Ascobolus, Humicola, and Spizellomyces in a fungal community increased the content of oxalate and AP, which directly decreased EDTA-Pb content, while the change of Bacillus, Ramlibacter, Gemmatimonas, and Candidatus Solibacter in the bacterial community regulated Fe/Mn/S/N cycle-related functions, thus promoting the conversion of Pb to oxidizable state. Our findings highlight that P. oxalicum SL2 enhanced the microbial-induced phosphate precipitation process by activating soil microbial communities and regulating their ecological functions.


Assuntos
Penicillium , Fósforo , Chumbo , Solo , Ácido Edético
12.
Gene ; 899: 148094, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142897

RESUMO

Salvia miltiorrhiza, a prominent traditional Chinese medicinal resource, has been extensively employed in the management of cardiovascular and cerebrovascular ailments. Ensuring the consistency of S. miltiorrhiza raw materials revolves around the imperative task of maintaining stable tanshinones content and composition. An effective approach in this regard involves the utilization of endophytic fungi as inducers. Within this context, our study spotlights an endophytic fungus, Penicillium steckii DF33, isolated from the roots of S. miltiorrhiza. Remarkably, this fungus has demonstrated a significant capacity to boost the biosynthesis and accumulation of tanshinones. The primary objective of this investigation is to elucidate the underlying regulatory mechanism by which DF33 enhances and regulates the biosynthesis and accumulation of tanshinones. This is achieved through its influence on the differential expression of crucial CYP450 genes within the S. miltiorrhiza hairy roots system. The results revealed that the DF33 elicitor not only promotes the growth of hairy roots but also enhances the accumulation of tanshinones. Notably, the content of cryptotanshinone was reached 1.6452 ± 0.0925 mg g-1, a fourfold increase compared to the control group. Our qRT-PCR results further demonstrate that the DF33 elicitor significantly up-regulates the expression of most key enzyme genes (GGPPS, CPS1, KSL1, CYP76AH1, CYP76AH3, CYP76AK1, CYP71D411) involved in the tanshinone biosynthesis pathway. This effect is particularly pronounced in certain critical CYP450 genes and Tanshinone ⅡA synthase (SmTⅡAS), with their expression levels peaking at 7 days or 14 days, respectively. In summary, endophytic P. steckii DF33 primarily enhances tanshinone biosynthesis by elevating the expression levels of pivotal enzyme genes associated with the modification and transformation stages within the tanshinone biosynthesis pathway. These findings underscore the potential of employing plant probiotics, specifically endophytic and root-associated microbes, to facilitate the biosynthesis and transformation of vital constituents in medicinal plants, and this approach holds promise for enhancing the quality of traditional Chinese medicinal materials.


Assuntos
Penicillium , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Abietanos , Fungos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Sci Rep ; 13(1): 22153, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092846

RESUMO

A total of 265 fungal individuals were isolated from soils exposed to heavy oil spills in the Yadavaran oil field in Iran to discover indigenous fungal species with a high potential to biodegrade petroleum hydrocarbon pollutants. Morphological and molecular identification of obtained fungal species led to their assignment into 16 genera and 25 species. Alternaria spp. (78%), Fusarium spp. (5%), and Cladosporium spp. (4%) were the most common genera, along with Penicillium spp., Neocamarosporium spp., Epicoccum sp., Kotlabaea sp., Aspergillus sp., Mortierella sp., and Pleurotus sp. A preliminary screening using the DCPIP indicator revealed that approximately 35% of isolates from Alternaria, Epicoccum, Neocamarosporium, Cladosporium, Fusarium, Stachybotrys, Penicillium, and Stemphylium demonstrated promising tolerance to crude oil. The best-performing isolates (12 fungal individuals) were further investigated for their capacity to mineralize a mixture of four polycyclic aromatic hydrocarbons (PAH) for 47 days, quantified by GC-MS. Eventually, two top-performing isolates, namely 5c-12 (Alternaria tenuissima) and 3b-1 (Epicoccum nigrum), were applied to petroleum-contaminated soil. The GC-MS analysis showed that 60 days after inoculation, these isolates successfully degraded more than 70% of the long-chain hydrocarbons in the soil, including C8-C16 n-alkanes, C36 n-alkane, and Pristane. This study introduces two fungal species (5c-12 and 3b-1) with high potential for biodegrading petroleum compounds and PAHs, offering promising prospects for the decontamination of oil-contaminated soil.


Assuntos
Penicillium , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Petróleo/metabolismo , Irã (Geográfico) , Microbiologia do Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos/análise , Alcanos/metabolismo , Biodegradação Ambiental , Penicillium/metabolismo , Solo
14.
Microbiol Res ; 277: 127486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742453

RESUMO

Botrytis cinerea and Penicillium expansum produce deterioration in fruit quality, causing losses to the food industry. Thus, plant essential oils (EOs) have been proposed as a sustainable alternative for minimizing the application of synthetic fungicides due to their broad-spectrum antifungal properties. This study investigated the efficacy of five EOs in suppressing the growth of B. cinerea and P. expansum and their potential antifungal mechanisms. EOs of Mentha × piperita L., Origanum vulgare L., Thymus vulgaris L., Eucalyptus globules Labill., and Lavandula angustifolia Mill., were screened for both fungi. The results showed that the EO of T. vulgaris and O. vulgare were the most efficient in inhibiting the growth of B. cinerea and P. expansum. The concentration increase of all EO tested increased fungi growth inhibition. Exposure of fungi to EOs of T. vulgaris and O. vulgare increased the pH and the release of constituents absorbing 260 nm and soluble proteins, reflecting membrane permeability alterations. Fluorescence microscopic examination revealed that tested EOs produce structural alteration in cell wall component deposition, decreasing the hypha width. Moreover, propidium iodide and Calcein-AM stains evidenced the loss of membrane integrity and reduced cell viability of fungi treated with EOs. Fungi treated with EOs decreased the mitochondria activity and the respiratory process. Therefore, these EOs are effective antifungal agents against B. cinerea and P. expansum, which is attributed to changes in the cell wall structure, the breakdown of the cell membrane, and the alteration of the mitochondrial activity.


Assuntos
Óleos Voláteis , Penicillium , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Botrytis
15.
J Nat Med ; 77(4): 992-997, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515675

RESUMO

A new monoacylglyceryltrimethylhomoserine, 21F121-A (1), was isolated from the culture of Penicillium glaucoroseum (21F00121) by LCMS-guided purification. The structure was elucidated by NMR and mass spectrometries. The absolute configuration of the homoserine moiety was analyzed by the ECD spectrum after acid hydrolysis, and the S-configuration of the glycerol moiety was determined based on the spectrum of the 1,2-dibenzoyl derivative after acid hydrolysis. Although a variety of diacylglyceryltrimethylhomoserine is distributed in lower plants and fungi, a limited number of studies on monoacyl derivatives have been reported. This is the fourth sample of monoacylglyceryltrimethylhomoserine discovered from a natural source, and the second sample isolated from a fungus. Compound 1 contains an unusual branched pentaene chain attached at the sn-1 position of glycerol and weakly inhibited the growth of HCT116 cells.


Assuntos
Glicerol , Penicillium , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Penicillium/química
16.
Arch Razi Inst ; 78(1): 297-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312737

RESUMO

Penicillium expansum is one of the most harmful post-harvest fungal pathogens. Aspergillus flavus is a saprotrophic fungal organism with broad distribution, producing mycotoxins that are toxic to humans and animals. This study aimed to investigate the antifungal activity of phenolic alcohol extract for the dry plants Oak (Quercus infectoria Oliv) and Bitter Melon (Citrullus colocynthis (L.) Schrad). Three concentrations of phenolic alcohol extract of Oak and Bitter Melon (100, 200 and 300 mg/mL) have been prepared against two fungi, Penicillium expansum and Aspergillus flavus. The results showed that all three concentrations of phenolic extracts gave antifungal activity, and the percentage inhibition of diameter growth (PIDG) increased with increasing concentrations. The C. colocynthis extract gave the highest average of PIDG (38.29%), followed by Q. infectoria with an average of PIDG (34.13%) against P. expansum and A. flavus. The A. flavus fungus experienced more potent inhibition, with an average of PIDG (49.05%), than P. expansum, with an average PIDG of (23.37%). The results showed that the C. colocynthis extract gave the highest PIDG (70.7±3.90), followed by Q. infectoria with PIDG (31.1±3.335) at a concentration of (300 mg/mL) on P. expansum. While the results for phenolic extracts of C.colocynthis and Q. infectoria on A. flavus showed that the antifungal activity of C. colocynthis extract had the highest PIDG (72.09±4.10) followed by Q. infectoria with PIDG (62.49±3.63) at a concentration of (300 mg/mL). We concluded that the phenolic extracts of Q. infectoria galls and C. colocynthis fruit showed inhibitory activity against two toxin-producing fungi, P. expanisum and A. flavus.


Assuntos
Antifúngicos , Citrullus colocynthis , Penicillium , Quercus , Animais , Humanos , Antifúngicos/farmacologia , Etanol , Fenóis/farmacologia , Extratos Vegetais/farmacologia
17.
Fitoterapia ; 169: 105572, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315718

RESUMO

Two undescribed citrinin derivatives, named peniciriols A-B (1-2), together with six known compounds were isolated from endophytic fungus Penicillum citrinum TJNZ-27. The structures of two new compounds were well established by the detail interpretation of NMR and HRESIMS data as well as ECD measurement powered by molecular calculation. Among them, compound 1 shared an unprecedented dimerized citrinin skeleton with the formation of an intriguing 9H-xanthene ring system, whereas compound 2 possess a highly substituted phenylacetic acid skeleton, which was rarely-occurring in natural secondary metabolites. Moreover, these novel compounds were tested for cytotoxic and antibacterial activities, whereas these novel compounds did not exhibit any noticeable cytotoxic or antibacterial activities.


Assuntos
Citrinina , Penicillium , Estrutura Molecular , Penicillium/química , Antibacterianos , Fungos
18.
Fitoterapia ; 168: 105513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37084850

RESUMO

The extensively chemical investigation of the EtOAc extract of the soil fungus Penicillium virgatum T49-A has successfully led to the isolation of two undescribed secondary metabolites penivirtone A (1) and peniviramide B (2) together with six known compounds. Their chemical structures including the absolute configurations of the two new compounds were comprehensively established by extensive analyses of NMR and HRESIMS spectra as well as ECD powered by theoretical calculations. Moreover, the cytotoxic and antibacterial activities of compounds 1-2 were also evaluated, whereas the two novel compounds showed no notable cytotoxic and antibacterial activities.


Assuntos
Antineoplásicos , Penicillium , Estrutura Molecular , Penicillium/química , Antibacterianos/farmacologia , Antibacterianos/química
19.
Microb Cell Fact ; 22(1): 83, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106372

RESUMO

Various factors contribute to the development of the acute inflammation process, like the pro-inflammatory cytokines, certain enzymes as well as oxidative stress mediators. The anti-inflammatory potential of the endophytic fungus Penicillium brefeldianum was explored in carrageenan-induced inflammation in rats. After isolation of the fungus from Acalypha hispida leaves, it was identified by 18S rRNA gene sequencing. Then, its phytochemical profile was elucidated using LC-ESI-MS/MS technique. There was a remarkable decrease in the edema weight in the endophytic fungi-treated group (200 mg/kg). Also, this group had few inflammatory cells and thickened epidermis with underlying moderate collagenosis when stained with haematoxylin and eosin. Besides, immunostaining with monoclonal antibodies of cyclooxygenase-2 and tumor necrosis factor alpha showed a decrease in the positive immune cells in the endophytic fungi treated group (200 mg/kg) in relation to the positive control. Interestingly, the levels of the inflammatory as well as oxidative stress markers, including prostaglandin E2, nitric oxide, and malondialdehyde, which are hallmarks of the inflammatory process, considerably diminished (p < 0.05) in this group. qRT-PCR was utilised to elucidate the impact of the endophytic fungi treatment on the expression of interleukins (IL-1ß and IL-6) genes, which decreased in comparison with the positive control group. Consequently, we can deduce that P. brefeldianum endophytic fungus has a promising anti-inflammatory potential and should be extensively studied on a broader range in the near future.


Assuntos
Penicillium , Espectrometria de Massas em Tandem , Ratos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
20.
Toxins (Basel) ; 15(2)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36828468

RESUMO

Angelica sinensis, a Chinese herbal medicine, is susceptible to molds during storage, reducing its quality, and even generating mycotoxins with toxic effects on human health. Fresh A. sinensis was harvested from Min County of Gansu Province in China and kept at room temperature. Naturally occurring symptoms were observed during different storage stages. Molds were isolated and identified from the diseased A. sinensis using morphological and molecular biology methods. The impact of ozone treatment on postharvest disease development and mycotoxin production was investigated. The results indicated that A. sinensis decay began on day 7 of storage and progressed thereafter. Nine mold species were isolated and characterized: day 7, two Mucormycetes; day 14, Clonostachys rosea; day 21, two Penicillium species and Aspergillus versicolor; day 28, Alternaria alternata and Trichoderma atroviride; and day 49, Fusarium solani. Ozone treatment markedly inhibited the development of postharvest disease and the mycotoxin production (such as, patulin, 15-acetyl-deoxynivalenol, and sterigmatocystin) in the rotten tissue of A. sinensis inoculated with the nine isolates.


Assuntos
Angelica sinensis , Micotoxinas , Ozônio , Patulina , Penicillium , Humanos , Esterigmatocistina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA