Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569294

RESUMO

BACKGROUND: Current therapeutic agents for AD have limited efficacy and often induce undesirable side effects. Gegen Qinlian tablets (GGQLT) are a well-known clearingheat formula used in clinical treatment of inflammatory diseases. Based on traditional Chinese medicine (TCM) theory, the strategy of clearing-heat is then compatible with the treatment of AD. However, it remains unknown whether GGQLT can exert neuroprotective effects and alleviate neuroinflammation in AD. PURPOSE: This study aimed to evaluate the anti-AD effects of GGQLT and to decipher its intricate mechanism using integrative analyses of network pharmacology, transcriptomic RNA sequencing, and gut microbiota. METHODS: The ingredients of GGQLT were analyzed using HPLC-ESI-Q/TOF-MS. The AD model was established by bilateral injection of Aß1-42 into the intracerebroventricular space of rats. The Morris water maze was used to evaluate the cognitive function of the AD rats. The long-term toxicity of GGQLT in rats was assessed by monitoring their body weights and pathological alterations in the liver and kidney. Reactive astrocytes and microglia were assessed by immunohistochemistry by labeling GFAP and Iba-1. The levels of inflammatory cytokines in the hippocampus were evaluated using ELISA kits, RT-PCR, and Western blot, respectively. The potential anti-AD mechanism was predicted by analyses of RNA-sequencing and network pharmacology. Western blot and immunohistochemistry were utilized to detect the phosphorylation levels of IκBα, NF-κB p65, p38, ERK and JNK. The richness and composition of gut bacterial and fungal microflora were investigated via 16S rRNA and ITS sequencing. RESULTS: Typical ingredients of GGQLT were identified using HPLC-ESI-Q/TOF-MS. GGQLT significantly improved the cognitive function of AD rats by suppressing the activation of microglia and astrocytes, improving glial morphology, and reducing the neuroinflammatory reactions in the hippocampus. RNA-sequencing, network and experimental pharmacological studies demonstrated that GGQLT inhibited the activation of NF-κB/MAPK signaling pathways in the hippocampus. GGQLT could also restore abnormal gut bacterial and fungal homeostasis and no longer-term toxicity of GGQLT was observed. CONCLUSIONS: Our findings, for the first time, demonstrate GGQLT exhibit anti-AD effects and is worthy of further exploration and development.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Masculino , Ratos , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Homeostase/efeitos dos fármacos , Comprimidos , Peptídeos beta-Amiloides/metabolismo , Neuroglia/efeitos dos fármacos , Farmacologia em Rede , Progressão da Doença , Citocinas/metabolismo
2.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653878

RESUMO

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas tau , Animais , Masculino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621897

RESUMO

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Medicina Tradicional Chinesa , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
4.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504535

RESUMO

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Medicamentos de Ervas Chinesas , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Donepezila , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Vermelho Congo , Camundongos Endogâmicos C57BL , Aspirina , Modelos Animais de Doenças
5.
J Ethnopharmacol ; 328: 118113, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548119

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY: This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS: Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS: Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aß) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aß production enzymes such as ß- and γ-secretases and activating Aß degrading enzyme to reduce Aß accumulation. In addition, TGP reduced the Aß42 level, the ratio of Aß42/Αß40, Aß accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION: Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aß aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Sirtuína 1 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Proteínas Quinases Ativadas por AMP , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Modelos Animais de Doenças
6.
Int J Biol Macromol ; 264(Pt 2): 130580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432266

RESUMO

Although Alzheimer's disease (AD) characterized with senile plaques and neurofibrillary tangles has been found for over 100 years, its molecular mechanisms are ambiguous. More worsely, the developed medicines targeting amyloid-beta (Aß) and/or tau hyperphosphorylation did not approach the clinical expectations in patients with moderate or severe AD until now. This review unveils the role of a vicious cycle between Aß-derived formaldehyde (FA) and FA-induced Aß aggregation in the onset course of AD. Document evidence has shown that Aß can bind with alcohol dehydrogenase (ADH) to form the complex of Aß/ADH (ABAD) and result in the generation of reactive oxygen species (ROS) and aldehydes including malondialdehyde, hydroxynonenal and FA; in turn, ROS-derived H2O2 and FA promotes Aß self-aggregation; subsequently, this vicious cycle accelerates neuron death and AD occurrence. Especially, FA can directly induce neuron death by stimulating ROS generation and tau hyper hyperphosphorylation, and impair memory by inhibiting NMDA-receptor. Recently, some new therapeutical methods including inhibition of ABAD activity by small molecules/synthetic polypeptides, degradation of FA by phototherapy or FA scavengers, have been developed and achieved positive effects in AD transgenic models. Thus, breaking the vicious loop may be promising interventions for halting AD progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Álcool Desidrogenase , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Peptídeos beta-Amiloides/metabolismo , Formaldeído
7.
J Proteomics ; 299: 105157, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462170

RESUMO

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteômica , Precursor de Proteína beta-Amiloide , Glicosídeos , Biomarcadores , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
8.
Methods Mol Biol ; 2754: 471-481, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512683

RESUMO

Neuroinflammation is the brain condition that occurs due to the hyper-activation of brain's immune cells and microglia, over the stimulation of extracellular aggregated proteins such as amyloid plaques and by extracellular Tau as well. The phenotypic changes of microglia from inflammatory to anti-inflammatory can be triggered by many factors, which also includes dietary fatty acids. The classes of omega-3 fatty acids are the majorly responsible in maintaining the anti-inflammatory phenotype of microglia. The enhanced phagocytic ability of microglia might induce the clearance of extracellular aggregated proteins, such as amyloid beta and Tau. In this study, we emphasized on the effect of α-linolenic acid (ALA) on the activation of microglia and internalization of the extracellular Tau seed in microglia.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/uso terapêutico , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas tau/metabolismo
9.
Methods Mol Biol ; 2761: 245-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427241

RESUMO

Alzheimer's disease (AD) is distinguished by extracellular accumulation of amyloid-beta plaques and intracellular neurofibrillary tangles of Tau. Pathogenic Tau species are also known to display "prion-like propagation," which explains their presence in extracellular spaces as well. Glial population, especially microglia, tend to proclaim neuroinflammatory condition, disrupted signaling mechanisms, and cytoskeleton deregulation in AD. Omega-3 fatty acids play a neuroprotective role in the brain, which can trigger the anti-inflammatory pathways as well as actin dynamics in the cells. Improvement of cytoskeletal assembly mechanism by omega-3 fatty acids would regulate the other signaling cascades in the cells, leading to refining clearance of extracellular protein burden in AD. In this study, we focused on analyzing the ability of α-linolenic acid (ALA) as a regulator of actin dynamics to balance the signaling pathways in microglia, including endocytosis of extracellular Tau burden in AD.


Assuntos
Doença de Alzheimer , Ácido alfa-Linolênico , Humanos , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Proteínas tau/metabolismo , Actinas/metabolismo , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo
10.
Phytother Res ; 38(5): 2462-2481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444049

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder where oxidative stress, induced by ferroptosis, has been linked to neuronal damage and cognitive deficits. The objective of this study is to investigate if the potential therapeutic agent, Curculigoside (CUR), could ameliorate AD by inhibiting ferroptosis. The potential therapeutic targets, such as GPX4 and SLC7A11, were identified using weighted gene co-expression network analysis (WGCNA). Concurrently, CUR was also screened against these potential targets using various analytical methods. For the in vivo studies, intragastric administration of CUR significantly ameliorated cognitive impairment in AD model mice induced by scopolamine and okadaic acid (OA). In vitro, CUR protected neuronal cells by altering the levels of ferroptosis-related specific markers in OA and scopolamine-induced neurotoxicity. The administration of CUR through intragastric route significantly reduced the levels of AD-promoting factors (such as Aß1-42, p-tau) and ferroptosis-promoting factors in the hippocampus and cortex of AD mice. Furthermore, CUR up-regulated the expression of GPX4 and decreased the expression of SLC7A11 in the ferroptosis signaling pathway, thereby increasing the ratio of glutathione (GSH)/oxidized glutathione (GSSG) in vivo and vitro. In conclusion, the cumulative results suggest that the natural compound CUR may serve as a promising therapeutic agent to ameliorate AD by inhibiting ferroptosis.


Assuntos
Doença de Alzheimer , Benzoatos , Modelos Animais de Doenças , Ferroptose , Glucosídeos , Lignanas , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Doença de Alzheimer/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Glucosídeos/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Masculino , Lignanas/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Medicina Tradicional Chinesa , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia
11.
J Ethnopharmacol ; 326: 117898, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38341114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crocus sativus L. known as saffron, is a popular food condiment with a high aroma, deep colour, and long and thick threads (stigmas) cultivated in Iran, Morocco, Spain, Italy, China, Japan, France, Turkey, and India. In 'Ayurveda', saffron is acknowledged for its immunostimulant, aphrodisiac, cardiotonic, liver tonic, nervine tonic, carminative, diaphoretic, diuretic, emmenagogue, galactagogue, febrifuge, sedative, relaxant, and anxiolytic activities. The renowned Persian physician and philosopher, Avicenna, delineated saffron as an antidepressant, hypnotic, anti-inflammatory, hepatoprotective, bronchodilator, and aphrodisiac in his book, the Canon of Medicine. Within traditional Iranian Medicine (TIM), saffron is characterized as a mood elevator and a rejuvenator for the body and senses. Further, the ethnopharmacological evidence indicates that saffron has shown an effect against neurodegenerative disorders namely, dementia, Alzheimer's, and Parkinson's with its bioactive constituents i.e., carotenoids and apocarotenoids. AIM: The present study aimed to investigate the potential of standardized (Kashmir Saffron, India) Crocus sativus extract (CSE) in chronic scopolamine-induced cognitive impairment, amyloid beta (Aß) plaque, and neurofibrillary tangles (NFT) accumulation in rat brains by targeting AChE inhibition and scopolamine mechanistic effect. METHODS: The experimental animals were divided into six groups: group 1: normal control, group 2: scopolamine, group 3,4 and 5 rivastigmine tartrate, CSE (p.o. 10 mg/kg, 15 mg/kg, and 20 mg/kg) respectively. Each treatment group received scopolamine after 20 min of dosing, till 4 weeks. The effects of different treatments on learning, acquisition, and reversal memory were performed using a Morris water maze test. In addition to behavioral assessments, biochemical parameters such as AChE, IL-6, and antioxidants were measured in isolated brains. Histological observations were also conducted to assess the presence of Aß plaques and NFT. Furthermore, molecular docking was performed to explore the potential AChE inhibitory activity of the bioactive constituents of standardized CSE. RESULTS: Scopolamine produces memory impairment, and its chronic administration forms Aß plaque and NFT in rat brains. Supplementation with CSE in presence of scopolamine has shown remarkable effects on behavioural activity, special acquisition, and reversal memory. The CSE has also shown promising effects on AChE inhibition and antioxidant activity. The results of the docking study also indicate that trans-crocetin, i.e., a biologically active metabolite of Crocins, has strong AChE inhibitory activity, supported by an in vivo animal experiment. CONCLUSION: Supplementation with CSE significantly attenuates the formation of Aß plaque and NFT in the hippocampus at a dose of 20 mg/kg per day. In addition, CSE also counters scopolamine-induced neuroinflammation.


Assuntos
Afrodisíacos , Disfunção Cognitiva , Crocus , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Crocus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Emaranhados Neurofibrilares/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Derivados da Escopolamina
12.
J Alzheimers Dis ; 98(1): 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363611

RESUMO

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-ß (Aß) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown. Objective: To evaluate the effects of TS extract (TSE) on neuronal damage, Aß accumulation, and neuroinflammation in AD models. Methods: Thioflavin T and western blot assays were used to assess effects on Aß aggregation in vitro. TS was treated to PC12 cells with Aß to assess the neuroprotective effects. Memory functions and histological brain features were investigated in TSE-treated 5×FAD transgenic mice and mice with intracerebroventricularly injected Aß. Results: TSE disrupted Aß aggregation and increased the viability of cells and phosphorylation of both protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) in vitro. TSE treatment also suppressed the accumulation of Aß plaques in the brain of 5×FAD mice, protected neuronal cells in both the subiculum and medial septum, and upregulated Akt/ERK phosphorylation in the hippocampus. Moreover, TSE ameliorated the memory decline and glial overactivation observed in 5×FAD mice. As assessing whether TS affect Aß-induced neurotoxicity in the Aß-injected mice, the effects of TS on memory improvement and neuroinflammatory inhibition were confirmed. Conclusions: TSE disrupted Aß aggregation, protected neurons against Aß-induced toxicity, and suppressed neuroinflammation, suggesting that it can suppress the development of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sêmen/metabolismo , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Modelos Animais de Doenças
13.
Ageing Res Rev ; 95: 102229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364913

RESUMO

Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.


Assuntos
Doença de Alzheimer , Vacinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica , Vacinas/uso terapêutico
14.
PLoS One ; 19(2): e0297289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315685

RESUMO

Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aß42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aß42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.


Assuntos
Doença de Alzheimer , Amiloidose , Gravidez , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/patologia , Camundongos Transgênicos , Lactação , Modelos Animais de Doenças , Encéfalo/metabolismo , Amiloidose/patologia , Colina/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Transtornos da Memória/patologia , Aprendizagem em Labirinto , Suplementos Nutricionais , Peptídeos beta-Amiloides/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339064

RESUMO

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Agregados Proteicos , Oxirredução , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
16.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330236

RESUMO

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Lignanas , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Cromatografia Líquida , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/farmacologia , Lignanas/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas em Tandem
17.
Neuroscience ; 544: 28-38, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423162

RESUMO

Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-ß(Aß) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aß protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Neocórtex , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Eletroacupuntura/métodos , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Aprendizagem Espacial , Modelos Animais de Doenças , Camundongos Transgênicos
18.
Int J Biol Macromol ; 263(Pt 2): 130516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423419

RESUMO

Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aß) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aß deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.


Assuntos
Doença de Alzheimer , Panax , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Panax/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
19.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396988

RESUMO

Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aß), and Aß-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aß, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.


Assuntos
Doença de Alzheimer , Antioxidantes , Extratos Vegetais , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
20.
Redox Biol ; 70: 103064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320455

RESUMO

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Assuntos
Doença de Alzheimer , Antígenos CD36 , Microglia , Selenoproteínas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Lipoilação , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA