Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3066-3073, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381965

RESUMO

This study aimed to investigate the effect of Wenyang Zhenshuai Granules(WYZSG) on autophagy and apoptosis of myocardial cells in rats with sepsis via regulating the expression of microRNA-132-3p(miR-132-3p)/uncoupling protein 2(UCP2). Sixty SD rats were randomly divided into modeling group(n=50) and sham operation group(n=10). The sepsis rat model was constructed by cecal ligation and perforation in the modeling group. The successfully modeled rats were randomly divided into WYZSG low-, medium-and high-dose groups, model group and positive control group. Rats in the sham operation group underwent opening and cecum division but without perforation and ligation. Hematoxylin-eosin(HE) staining was used to observe the pathological changes of rat myocardial tissue. Myocardial cell apoptosis was detected by TdT-mediated dUTP nick end labeling(TUNEL) assay. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression of miR-132-3p and the mRNA expressions of UCP2, microtubule-associated protein light chain 3(LC3-Ⅱ/LC3-Ⅰ), Beclin-1 and caspase-3 in rat myocardial tissue. The protein expressions of UCP2, LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 in myocardial tissue were detected by Western blot. Dual luciferase reporter assay was used to verify the regulatory relationship between miR-132-3p and UCP2. The myocardial fibers of sepsis model rats were disordered, and there were obvious inflammatory cell infiltration as well as myocardial cell edema and necrosis. With the increase of the WYZSG dose, the histopathological changes of myocardium were improved to varying degrees. Compared with the conditions in the sham operation group, the survival rate and left ventricular ejection fraction(LVEF) of rats in the model group, positive control group and WYZSG low-, medium-and high-dose groups were decreased, and the myocardial injury score and apoptosis rate were increased. Compared with the model group, the positive control group and WYZSG low-, medium-and high-dose groups had elevated survival rate and LVEF, and lowered myocardial injury score and apoptosis rate. The expression of miR-132-3p and the mRNA and protein expressions of UCP2 in myocardial tissue in the model group, positive control group and WYZSG low-, medium-and high-dose groups were lower, while the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 were higher than those in the sham operation group. Compared with model group, the positive control group and the WYZSG low-, medium-and high-dose groups had an up-regulation in the expression of miR-132-3p and the mRNA and protein expressions of UCP2, while a down-regulation in the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3. WYZSG inhibited excessive autophagy and apoptosis of myocardial cells in septic rats and improved myocardial injury, possibly by regulating the expression of miR-132-3p/UCP2.


Assuntos
Apoptose , Autofagia , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Miócitos Cardíacos , Animais , Ratos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Medicina Tradicional Chinesa , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Proteína Desacopladora 2/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Cell Rep ; 41(13): 111894, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577374

RESUMO

Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.


Assuntos
NAD , Pró-Opiomelanocortina , Camundongos , Animais , Pró-Opiomelanocortina/metabolismo , NAD/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Lactatos/metabolismo , Hipotálamo/metabolismo , Proteína Desacopladora 2/metabolismo
3.
J Food Biochem ; 46(10): e14332, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894798

RESUMO

Flower of Citrus aurantium L. var. amara Engl. (CAVA) has been confirmed to have promising anti-obesity effects. However, the regulation of alkaloid extracts from flower of CAVA (Al) on lipid metabolism remain unknown. In this study, Al was optimized by ultrasound-assisted extraction using response surface methodology. The optimal conditions were ultrasonic time 72 min, ethanol concentration 78% and liquid/solid ratio 30 ml/g with the maximum alkaloid yield 5.66%. LC-MS assay indicated that the alkaloid compounds were enriched in Al after optimization. Nine alkaloid compounds were identified in Al by LC-MS assay and stachydrine, caffeine and cathine appeared as the major alkaloid compounds. Bioactivity assay showed that Al treatment significantly increased superoxide dismutase (SOD) activity, and reduced malonaldehyde (MDA) and reactive oxygen species (ROS) levels. Al administration also reversed oleic acid-induced hepatic steatosis in Hep G2 cells by inhibiting the expression of lipogenesis-signaling genes including fatty acid synthase (FAS), peroxisome proliferator-activated receptor subtype γ (PPARγ), uncoupling protein 2 (UCP2), and retinol binding protein (RBP4). However, OA-induced reduction of lipolysis-related gene carnitine palmitoyl transferase 1A (CPT1A) in Hep G2 cells was not improved by Al supplementation. Moreover, the increased SOD activity and decreased MDA and ROS contents were also observed in Caenorhabditis elegans by Al addition. Al intervention exhibited the ability to inhibit lipid accumulation in C. elegans by suppressing expression of lipid metabolism-related genes. These results suggested that the alkaloid extracts from the flower of CAVA showed great potential to regulate lipid metabolism. PRACTICAL APPLICATIONS: The extraction of alkaloid extracts from the flower of CAVA was optimized with a maximum yield of 5.66%. The regulatory effects and mechanisms of Al on lipid metabolism of Hep G2 cells and Caenorhabditis elegans were also investigated. More clinical studies are required to evaluate the potential of using alkaloids from the flower of CAVA as therapeutic agents against lipid metabolic disorders.


Assuntos
Citrus , Animais , Caenorhabditis elegans , Cafeína/análise , Carnitina/análise , Citrus/química , Etanol/análise , Ácido Graxo Sintases/análise , Flores/química , Malondialdeído/análise , Ácido Oleico/análise , PPAR gama , Extratos Vegetais/química , Espécies Reativas de Oxigênio/análise , Proteínas de Ligação ao Retinol/análise , Superóxido Dismutase , Transferases/análise , Proteína Desacopladora 2/análise
4.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628447

RESUMO

Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Iridoides/farmacologia , Iridoides/uso terapêutico , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/metabolismo
5.
Acta Pharmacol Sin ; 43(6): 1441-1452, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34417575

RESUMO

Diabetes is often associated with vitamin A disorders. All-trans retinoic acid (ATRA) is the main active constituent of vitamin A. We aimed to investigate whether ATRA influences diabetic progression and its mechanisms using both Goto-Kazizazi (GK) rats and INS-1 cells. Rat experiments demonstrated that ATRA treatment worsened diabetes symptoms, as evidenced by an increase in fasting blood glucose (FBG) levels and impairment of glucose homeostasis. Importantly, ATRA impaired glucose-stimulated insulin secretion (GSIS) and increased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and uncoupling protein 2 (UCP2) in the rat pancreas. Data from INS-1 cells also showed that ATRA upregulated SREBP-1c and UCP2 expression and impaired GSIS at 23 mM glucose. Srebp-1c or Ucp2 silencing attenuated GSIS impairment by reversing the ATRA-induced increase in UCP2 expression and decrease in ATP content. ATRA and the retinoid X receptor (RXR) agonists 9-cis RA and LG100268 induced the gene expression of Srebp-1c, which was almost completely abolished by the RXR antagonist HX531. RXRα-LBD luciferase reporter plasmid experiments also demonstrated that ATRA concentration-dependently activated RXRα, the EC50 of which was 1.37 µM, which was lower than the ATRA concentration in the pancreas of GK rats treated with a high dose of ATRA (approximately 3 µM), inferring that ATRA can upregulate Srebp-1c expression in the pancreas by activating RXR. In conclusion, ATRA impaired GSIS partly by activating the RXR/SREBP-1c/UCP2 pathway, thus worsening diabetic symptoms. The results highlight the roles of ATRA in diabetic progression and establish new strategies for diabetes treatment.


Assuntos
Glucose , Vitamina A , Animais , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ratos , Receptores X de Retinoides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Tretinoína/farmacologia , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Vitamina A/metabolismo
6.
Curr Neuropharmacol ; 20(4): 662-674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33882809

RESUMO

Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Animais , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 2/genética
7.
Chin J Integr Med ; 28(11): 975-982, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34874519

RESUMO

OBJECTIVE: To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model. METHODS: Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS: Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05). CONCLUSION: LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Lycium/química , Lycium/metabolismo , Catalase/metabolismo , Biogênese de Organelas , Alanina Transaminase , Proteína Desacopladora 2 , Ácidos Graxos não Esterificados , Manose , Fator 1 Nuclear Respiratório/metabolismo , PPAR gama/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Medicamentos de Ervas Chinesas/farmacologia , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Polissacarídeos/farmacologia , Triglicerídeos , RNA Mensageiro , Aspartato Aminotransferases , Glucose , Trifosfato de Adenosina
8.
Food Chem Toxicol ; 153: 112261, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015425

RESUMO

Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by antioxidants like carotenoids. Some mycotoxins as well as carotenoids penetrate the blood brain barrier (BBB) inducing alterations related to redox balance in the mitochondria. Therefore, the in vitro BBB model ECV304 was subcultured for 7 days and exposed to beauvericine, enniatins, ochratoxin A, zearalenone (100 nM each), individually and combined, and pumpkin extract (500 nM). Reactive oxygen species were measured by fluorescence using the dichlorofluorescein diacetate probe at 0 h, 2 h and 4 h. Intracellular ROS generation reported was condition dependent. RNA extraction was performed and gene expression was analyzed by qPCR after 2 h exposure. The selected genes were related to the Electron Transport Chain (ETC) and mitochondrial activity. Gene expression reported upregulation for exposures including mycotoxins plus pumpkin extract versus individual mycotoxins. Beauvericin and Beauvericin-Enniatins exposure significantly downregulated Complex I and pumpkin addition reverted the effect upregulating Complex I. Complex IV was the most downregulated structure of the ETC. Thioredoxin Interacting Protein was the most upregulated gene. These data confirm that mitochondrial processes in the BBB could be compromised by mycotoxin exposure and damage could be modulated by dietary antioxidants like carotenoids.


Assuntos
Carotenoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Micotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Linhagem Celular , Cucurbita/química , Depsipeptídeos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genes Mitocondriais/efeitos dos fármacos , Humanos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Eur J Pharmacol ; 881: 173200, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445706

RESUMO

Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.


Assuntos
Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Hipernutrição/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Animais Lactentes , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estado Nutricional , Hipernutrição/metabolismo , Hipernutrição/patologia , Hipernutrição/fisiopatologia , Oxirredução , Consumo de Oxigênio , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
10.
Pharmacol Res ; 159: 104945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454225

RESUMO

Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colagogos e Coleréticos/farmacologia , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Necrose Hepática Massiva/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Anti-Inflamatórios/toxicidade , Antioxidantes/toxicidade , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colagogos e Coleréticos/toxicidade , Humanos , Iridoides/toxicidade , Fígado/metabolismo , Fígado/patologia , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteína Desacopladora 2/metabolismo
11.
Pharmacol Res ; 156: 104770, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217148

RESUMO

The effects of oleoylethanolamide (OEA) on NAFLD are yet to be examined in human. The objective of the present study was to examine the effects of OEA supplementation along with weight loss intervention on the expression of PPAR-α, uncoupling proteins 1and 2 (UCP1 and UCP2) genes in the peripheral blood mononuclear cells (PBMCs), metabolic parameters, and anthropometric indices among obese patients with NAFLD. In this triple-blind placebo-controlled randomized clinical trial, 76 obese patients newly diagnosed with NAFLD were randomly allocated into either OEA or placebo group along with calorie-restricted diets for 12 weeks. At pre-and post-intervention phase, mRNA expression levels of PPAR-α, UCP1, and UCP2 genes in the PBMCs, serum levels of metabolic parameters as well as diet and appetite sensations were assessed. There was a significant increase in the expression levels of PPAR-α, UCP1, and UCP2 genes in the PBMCs, compared to the placebo at the endpoint. A significant decrease in the anthropometric indices, energy and carbohydrate intakes, glycemic parameters, except for hemoglobin A1c concentration was also observed in the OEA group, compared to the placebo group. OEA treatment significantly resulted in decreased serum levels of triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), ALT/AST, increased serum levels of high-density lipoprotein cholesterol (HDL-C), and improved appetite sensations. Importantly, a significant improvement in TG, ALT, AST, ALT/AST, HDL-C levels as well as appetite sensations by OEA were under the influence of body mass index (BMI). Although liver steatosis severity was significantly reduced in both groups, the between-group differences did not reach statistical significance (P = 0.061). In conclusion, the present study, for the first time, revealed that OEA supplementation significantly improved anthropometric and metabolic risk factors related to NAFLD.


Assuntos
Suplementos Nutricionais , Endocanabinoides/uso terapêutico , Leucócitos Mononucleares/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Ácidos Oleicos/uso terapêutico , PPAR alfa/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 2/metabolismo , Adulto , Antropometria , Regulação do Apetite , Índice de Massa Corporal , Restrição Calórica , Terapia Combinada , Comportamento Alimentar , Feminino , Regulação da Expressão Gênica , Humanos , Irã (Geográfico) , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/diagnóstico , Obesidade/genética , Obesidade/metabolismo , PPAR alfa/genética , Fatores de Tempo , Resultado do Tratamento , Proteína Desacopladora 1/genética , Proteína Desacopladora 2/genética , Redução de Peso , Adulto Jovem
12.
Pharm Nanotechnol ; 8(1): 63-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31577213

RESUMO

BACKGROUND: Type 1 diabetes mellitus is characterized by the destruction of insulin- producing Beta cells in the pancreas. Researchers hope that islet transplantation will help to patients with insulin-dependent diabetes mellitus (IDDM). Oxidative stress is the most important challenge that beta cells face to it after isolation, and mitochondrial dysfunction is a crucial mediator in beta cells death. Hence, therapeutic approaches can shift to antioxidants through the application of nanoparticles such as cerium and yttrium oxide nanoparticles (Cer and Ytt Ox NPs) and nano-selenium (Nan Se). OBJECTIVE: This study evaluates the effects of Cer and Ytt Ox NPs and Nan Se on H2O2- induced oxidative stress in pancreatic beta cells with focus on mitochondrial dysfunction pathway. METHODS: CRI-D2 beta-cell line were pretreated with Cer Ox NPs (200 µM) + Ytt Ox NPs (0.5 µg/mL) for 3 days and/or Nan Se (0.01 µM) for 1 day. Then markers of oxidative stress, mitochondrial dysfunction, insulin and glucagon secretion were measured. RESULTS: We reported a decrease in H2O2-induced reactive oxygen species (ROS) level and glucagon secretion, and an increase in H2O2-reduced ATP/ADP ratio, MMP, as well as UCP2 protein expression, and insulin secretion by pretreatment of CRI-D2 cells with Cer and Ytt Ox NPs and/or Nan Se. CONCLUSION: We found maximum protective effect with Cer and Ytt Ox NPs on CRI-D2 beta-cell line exposed by H2O2 for keeping beta cells alive until transplant whereas combination of Cer and Ytt Ox NPs and Nan Se had very little protective effect in this condition.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Peróxido de Hidrogênio/efeitos adversos , Células Secretoras de Insulina/citologia , Selênio/farmacologia , Ítrio/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Cério/química , Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Selênio/química , Proteína Desacopladora 2/metabolismo , Ítrio/química
13.
Cell Metab ; 30(5): 952-962.e5, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31495690

RESUMO

Microglia play a crucial role in immune responses, including inflammation. Diet-induced obesity (DIO) triggers microglia activation and hypothalamic inflammation as early as 3 days after high-fat diet (HFD) exposure, before changes in body weight occur. The intracellular mechanism(s) responsible for HFD-induced microglia activation is ill defined. Here, we show that in vivo, HFD induced a rapid and transient increase in uncoupling protein 2 (Ucp2) mRNA expression together with changes in mitochondrial dynamics. Selective microglial deletion of Ucp2 prevented changes in mitochondrial dynamics and function, microglia activation, and hypothalamic inflammation. In association with these, male and female mice were protected from HFD-induced obesity, showing decreased feeding and increased energy expenditure that were associated with changes in the synaptic input organization and activation of the anorexigenic hypothalamic POMC neurons and astrogliosis. Together, our data point to a fuel-availability-driven mitochondrial mechanism as a major player of microglia activation in the central regulation of DIO.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Peso Corporal , Metabolismo Energético/genética , Feminino , Técnicas de Inativação de Genes , Hipotálamo/citologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , Proteína Desacopladora 2/genética
14.
Mar Drugs ; 17(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540318

RESUMO

This study investigated the anti-obesity effect of a polysaccharide-rich red algae Gelidium amansii hot-water extract (GHE) in high-fat (HF) diet-induced obese hamsters. GHE contained 68.54% water-soluble indigestible carbohydrate polymers. Hamsters were fed with a HF diet for 5 weeks to induce obesity, and then randomly divided into: HF group, HF with 3% guar gum diet group, HF with 3% GHE diet group, and HF with orlistat (200 mg/kg diet) group for 9 weeks. The increased weights of body, liver, and adipose in the HF group were significantly reversed by GHE supplementation. Lower plasma leptin, tumor necrosis factor-α, and interleukin-6 levels were observed in the GHE+HF group compared to the HF group. GHE also increased the lipolysis rate and decreased the lipoprotein lipase activity in adipose tissues. GHE induced an increase in the phosphorylation of AMP-activated protein kinase (AMPK) and the protein expressions of peroxisome proliferator-activated receptor alpha (PPARα) and uncoupling protein (UCP)-2 in the livers. The decreased triglyceride and total cholesterol in the plasma and liver were also observed in obese hamsters fed a diet with GHE. These results suggest that GHE exerts a down-regulation effect on hepatic lipid metabolism through AMPK phosphorylation and up-regulation of PPARα and UCP-2 in HF-induced obese hamsters.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Suplementos Nutricionais , Obesidade/dietoterapia , Extratos Vegetais/administração & dosagem , Rodófitas/química , Adenilato Quinase/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mesocricetus , Obesidade/etiologia , Orlistate/administração & dosagem , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 2/metabolismo , Regulação para Cima/efeitos dos fármacos , Água/química
15.
Biomed Res Int ; 2019: 9013904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275989

RESUMO

BACKGROUND: It has been documented that vitamin D supplementation showed an improvement of symptoms of diabetic nephropathy; however, the underlying mechanisms remain unknown. We here tested the hypothesis that active vitamin D is able to up-regulate AKT/UCP2 signaling to alleviate oxidative stress of renal tubular cell line HK2. METHODS: There are eight groups in the present study: normal glucose, osmotic control (5.5 mmol/L D-glucose+24.5 mmol/L D-mannitol), NAC control (30 mmol/L D-glucose + 1.0 mmol/L N-Methylcysteine), high glucose, high glucose+VD, high glucose (HG)+VD+siVDR, HG+VD+AKT inhibitor (AI), and high glucose+VD+UCP2 inhibitor (Gelipin). Concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) was analyzed by ELISA. Reactive oxygen species (ROS), mitochondrial membrane potential and apoptosis were measured by flow cytometry. JC-1 was evaluated by flow cytometry. The presence of VDR, AKT, and UCP2 in HK cells was assessed using RT-PCR and western blot analyses. RESULTS: VD administration significantly upregulated the SOD activation and downregulated MDA levels compared to HG group. siVDR, AKT inhibitor, and UCP2 inhibitor significantly suppressed the activation of SOD and increased the expression of MDA compared to VD group. ROS generation and apoptosis of HK2 cells in HG+VD group were significantly lower than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. ΔΨm in HG+VD group was obviously higher than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. Decreased mRNA and protein levels of VDR, p-AKT, and UCP2 were observed in HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group compared to those in HG+VD group. CONCLUSIONS: siVDR, AKT inhibitor, and UCP2 inhibitor elevated the ROS and apoptosis of HK2 cells while attenuating the mitochondrial membrane potential, suggesting that vitamin D protects renal tubular cell from high glucose by AKT/UCP2 signaling pathway.


Assuntos
Glucose/toxicidade , Túbulos Renais/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Proteína Desacopladora 2/metabolismo , Vitamina D/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
16.
Mol Nutr Food Res ; 63(19): e1900110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31298470

RESUMO

SCOPE: To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS: Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION: Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.


Assuntos
Envelhecimento , Doenças Cardiovasculares/etiologia , Gorduras na Dieta/efeitos adversos , Leptina/fisiologia , Tecido Adiposo Branco/química , Tecido Adiposo Branco/metabolismo , Fatores Etários , Animais , Doenças Cardiovasculares/fisiopatologia , Carnitina O-Palmitoiltransferase/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos/análise , Leptina/genética , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , Miocárdio/metabolismo , PPAR gama/genética , Óleo de Palmeira/administração & dosagem , Óleo de Palmeira/química , Proteína Desacopladora 2/genética
17.
JCI Insight ; 52019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120438

RESUMO

BACKGROUND: Physical function decreases with age, and though bioenergetic alterations contribute to this decline, the mechanisms by which mitochondrial function changes with age remains unclear. This is partially because human mitochondrial studies require highly invasive procedures, such as muscle biopsies, to obtain live tissue with functional mitochondria. However, recent studies demonstrate that circulating blood cells are potentially informative in identifying systemic bioenergetic changes. Here, we hypothesize that human platelet bioenergetics reflect bioenergetics measured in muscle biopsies. METHODS & RESULTS: We demonstrate that maximal and ATP-linked respiratory rate measured in isolated platelets from older adults (86-93 years) correlates significantly with maximal respiration (r = 0.595; P = 0.003) measured by muscle biopsy respirometry and maximal ATP production (r = 0.643; P = 0.004) measured by 31P-MRS respectively, in the same individuals. Comparison of platelet bioenergetics in this aged cohort to platelets from younger adults (18-35 years) shows aged adults demonstrate lower basal and ATP-linked respiration. Platelets from older adults also show enhanced proton leak, which is likely due to increased protein levels of uncoupling protein 2, and correlates with increased gate speed in this cohort (r = 0.58; P = 0.0019). While no significant difference in glycolysis was observed in older adults compared to younger adults, platelet glycolytic rate correlated with fatigability (r = 0.44; P = 0.016). CONCLUSIONS: These data advance the mechanistic understanding of age-related changes in mitochondrial function. Further, they suggest that measuring platelet bioenergetics provides a potential supplement or surrogate for muscle biopsy measurement and may be a valuable tool to study mitochondrial involvement in age-related decline of physical function.


Assuntos
Plaquetas/metabolismo , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Músculos , Proteína Desacopladora 2/metabolismo , Adulto Jovem
18.
Biofactors ; 45(4): 607-615, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31120605

RESUMO

Enhancing soluble receptor for advanced glycation endproducts (sRAGE) is considered as a potent strategy for diabetes therapy. sRAGE secretion is regulated by calcium and transient receptor potential canonical (TRPC) channels. However, the role of TRPC channels in diabetes remains unknown. 18ß-Glycyrrhetinic acid (18ß-GA), produced from liquorice, has shown antidiabetic properties. This study was aimed to investigate the effect of 18ß-GA on sRAGE secretion via TRPC channels in high glucose (HG)-induced THP-1 cells. HG treatment enhanced TRPC3 and TRPC6 expression and consequently caused reactive oxygen species (ROS) accumulation mediated through p47 nicotinamide-adenine dinucleotide phosphate oxidase and inducible nitric oxide synthase (iNOS) associated with uncoupling protein 2 (UCP2) decline and lower sRAGE secretion. Interestingly, 18ß-GA showed the dramatic effects similar to Pyr3 or 2-aminoethyl diphenyl borinate inhibitors and effectively reversed HG-elicited mechanisms including that blocking TRPC3 and TRPC6 protein expressions, suppressing intracellular [Ca2+] concentration, decreasing expressions of ROS, p47s, and iNOS, but increasing UCP2 level and promoting sRAGE secretion. Therefore, 18ß-GA provides a potential implication to diabetes mellitus and its complications.


Assuntos
Glucose/antagonistas & inibidores , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/química , Hipoglicemiantes/farmacologia , Receptor para Produtos Finais de Glicação Avançada/genética , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6/genética , Compostos de Boro/farmacologia , Cálcio/metabolismo , Regulação da Expressão Gênica , Glucose/toxicidade , Ácido Glicirretínico/isolamento & purificação , Ácido Glicirretínico/farmacologia , Humanos , Hipoglicemiantes/isolamento & purificação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Células THP-1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
19.
Hum Cell ; 32(3): 251-259, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30701373

RESUMO

Chemotherapy-induced neuropathic pain (CINP) is a common and debilitating side effect of cancer treatment. Evodiamine, a major effective compound isolated from Evodia rutaecarpa, has been associated with anti-inflammatory and anti-nociceptive effects, an important therapeutic strategy for the treatment of neuropathic pain. However, the effects of evodiamine on CINP remain unknown. Thus, this study aims to investigate the pharmacological potential of evodiamine in attenuating paclitaxel-induced peripheral neuropathy. The results showed that evodiamine enhanced but not reduced the sensitivity of cancer cells to paclitaxel treatment. In a rat model of paclitaxel-induced peripheral neuropathy, evodiamine significantly ameliorated the development of mechanical and thermal hypersensitivity. Moreover, paclitaxel-induced the loss of intraepidermal nerve fibers was markedly inhibited by evodiamine administration. This inhibitory effect was accompanied with the decrease in inflammatory and chemoattractant cytokines level in dorsal root ganglia (DRG), such as interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1. In addition, evodiamine administration limited paclitaxel-induced elevation of oxidative stress in DRG tissues. The mitochondrial dysfunction evoked by paclitaxel was also remarkably improved in evodiamine-treated rats, evidenced by restoration of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), uncoupling protein 2 (UCP2), and superoxide dismutase 2 (SOD2) expression. In in vitro studies, we found that evodiamine prevented paclitaxel-induced the loss of mitochondrial membrane potential and PGC-1α, UCP2 and SOD2 expression in DRG cells. In conclusion, our study demonstrates that evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammatory response and maintaining mitochondrial anti-oxidant functions, indicating that evodiamine may be a promising therapeutic agent for CINP treatment.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Mitocôndrias/metabolismo , Neuralgia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Paclitaxel/efeitos adversos , Fitoterapia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Células Tumorais Cultivadas , Proteína Desacopladora 2
20.
Phytomedicine ; 53: 171-181, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30668396

RESUMO

BACKGROUND: Although the protective effects of Yiqi-Huoxue granule (YQHX), a Chinese 4-herb formula, on patients with ischemic heart diseases are related to the attenuation of oxidative stress injury, the mechanism(s) underlying these actions remains poorly understood. PURPOSE: Our aim was to investigate the potential protective effects of YQHX treatment against oxidative stress induced by hydrogen peroxide (H2O2) in rat H9c2 cells. METHODS: H9c2 cells were treated with YQHX for 16 h before exposed to 200 µM H2O2 for 6 h. The apoptosis induced by H2O2 was measured using hoechst 33,342 staining and Annexin-V FITC/PI assay. The expression of uncoupling protein 2 (UCP2), Bcl-2, Bax, and caspase-3 were observed using western blot. The effects of UCP2 knockdown on cell apoptosis and intracellular ROS production were also investigated. RESULTS: H2O2 exposure led to significant activation of oxidative stress followed by increased apoptosis and ROS production, as well as decreased UCP2 expression in H9c2 cells. YQHX treatment at the concentration of 0.75 and 1.5 mg/ml remarkably reduced the expression of Bax and caspase-3, whereas increased the protein expression of Bcl-2 and UCP2. These changes were attenuated by transgenic knockdown of UCP2 with Lenti-shUCP2 vector. CONCLUSIONS: Taken together, our study demonstrated that YQHX attenuates H2O2-induced apoptosis by upregulating UCP2 expression in H9c2 Cells, suggesting that YQHX is a promising therapeutic approach for the treatment of I/R injury-mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Proteína Desacopladora 2/metabolismo , Animais , Linhagem Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína Desacopladora 2/genética , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA