Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123186, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142029

RESUMO

The second-generation neonicotinoid thiamethoxam, is prevalent in soils because of its extensive application and persistence. However, the comprehensive effects of thiamethoxam residue in soils on cultivated plants are still poorly understood. This study examined variations of growth state, physiological parameters, antioxidant activity, and metabolites in lettuce after thiamethoxam exposure; the removal effects of different washing procedures were also investigated. The results indicated that thiamethoxam in soils significantly increased the fresh weight, seedling height and chlorophyll content in lettuce, and also altered its lipid, carbohydrate, nucleotide and amino acids composition based on untargeted metabolomics. KEGG pathway analysis uncovered a disruption of lipid pathways in lettuce exposed to both low and high concentrations of thiamethoxam treatments. In addition, the terminal residues of thiamethoxam in lettuce were below the corresponding maximum residue limits stipulated for China. The thiamethoxam removal rates achieved by common washing procedures in lettuce ranged from 26.9% to 42.6%. This study thus promotes the understanding of the potential food safety risk caused by residual thiamethoxam in soils.


Assuntos
Inseticidas , Lactuca , Tiametoxam , Inseticidas/análise , Tiazóis/análise , Neonicotinoides/toxicidade , Neonicotinoides/química , Solo/química , Lipídeos
2.
PLoS Negl Trop Dis ; 17(11): e0011737, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976311

RESUMO

BACKGROUND: The standard operating procedure for testing the susceptibility of adult mosquitoes to neonicotinoid or butenolide insecticides recommends using a vegetable oil ester (Mero) as a surfactant. However, there is growing evidence that this adjuvant contains surfactants that can enhance insecticide activity, mask resistance and bias the bioassay. METHODOLOGY/PRINCIPAL FINDINGS: Using standard bioassays, we tested the effects of commercial formulations of vegetable oil-based surfactants similar to Mero on the activity of a spectrum of active ingredients including four neonicotinoids (acetamiprid, clothianidin, imidacloprid and thiamethoxam) and two pyrethroids (permethrin and deltamethrin). We found that three different brands of linseed oil soap used as cleaning products drastically enhanced neonicotinoid activity in Anopheles mosquitoes. At 1% (v/v), the surfactant reduced the median lethal concentration, LC50, of clothianidin more than 10-fold both in susceptible and in resistant populations of Anopheles gambiae. At 1% or 0.5% (v/v), linseed oil soap restored the susceptibility of adult mosquitoes fully to clothianidin, thiamethoxam and imidacloprid and partially to acetamiprid. By contrast, adding soap to the active ingredient did not significantly affect the level of resistance to permethrin or deltamethrin suggesting that vegetable oil-based surfactants specifically enhance the potency of some classes of insecticides. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that surfactants are not inert ingredients, and their use in susceptibility testing may jeopardize the ability to detect resistance. Further research is needed to evaluate the potential, the limitations and the challenges of using some surfactants as adjuvants to enhance the potency of some chemicals applied in mosquito control.


Assuntos
Culicidae , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Tiametoxam , Tensoativos/farmacologia , Óleos de Plantas , Óleo de Semente do Linho , Sabões/farmacologia , Resistência a Inseticidas , Neonicotinoides/farmacologia , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Adjuvantes Imunológicos/farmacologia , Mosquitos Vetores
3.
Pestic Biochem Physiol ; 195: 105558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666594

RESUMO

The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an extremely destructive notifiable quarantine pest. Over the last two decades, neonicotinoid insecticides, particularly thiamethoxam and imidacloprid, have been used to control it in Xinjiang, and local field populations have developed different levels of resistance in consequence. However, the contributions of nicotinic acetylcholine receptors (nAChRs) to neonicotinoid resistance are currently poorly understood in CPB. Previous studies have shown that nAChRα1, α3, α8 and ß1 are major target subunits for neonicotinoids in some model and important agricultural insects including nAChRα1 subunit of L. decemlineata (Ldα1). In this study, the expression levels of Ldα3, Ldα8 and Ldß1 following 72 h of treatments with median lethal doses of thiamethoxam and imidacloprid were compared using real-time quantitative PCR. These genes were then individually and simultaneously knocked down with Ldα1 by RNA interference (RNAi) using a double-stranded RNA (dsRNA) feeding method for six days to explore their roles in CPB susceptibility to imidacloprid and thiamethoxam. The results showed that the expressions of Ldα3, Ldα8 and Ldß1 were significantly decreased by 36.99-74.89% after thiamethoxam and imidacloprid treatments, compared with the control. The significant downregulation of the target genes resulting from RNAi significantly reduced the mortality of adults exposed to thiamethoxam and imidacloprid by 34.53% -56.44% and 28.78%-43.93%, respectively. Furthermore, the adult survival rates were not affected by every dsRNA-feeding treatment, while the body weight of the test adults significantly deceased after four and six days of individual gene RNAi. This study showed that Ldα3, Ldα8 and Ldß1 are down-regulated by thiamethoxam and imidacloprid and play important roles in the tolerance of CPB to neonicotinoids.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/genética , Tiametoxam , Neonicotinoides/farmacologia
4.
J Hazard Mater ; 458: 131896, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364439

RESUMO

Pesticides are important for agricultural development; however, animals involved in rice-fish farming absorb the pesticides used during the farming process. Thiamethoxam (TMX) is extensively used in agriculture and is gradually occupying the market for traditional pesticides. Therefore, this study aimed to investigate whether selenomethionine (SeMet) could affect the survival rate, bioaccumulation of TMX, serum biochemical parameters, lipid peroxidation, antioxidants in the hepatopancreas, and expression of stress genes after exposure of red swamp crayfish to 10 ppt TMX for 7 days. The results showed that the survival rate significantly increased and the bioaccumulation of TMX significantly decreased with SeMet administration (P < 0.05). Furthermore, severe histological damage to the hepatopancreas of red crayfish was observed after exposure to TMX; however, this damage was alleviated after SeMet administration. SeMet also significantly reduced the TMX-induced changes in serum biochemical parameters, malondialdehyde content, and antioxidant enzyme activity in crayfish hepatopancreas (P < 0.05). Notably, analysis of the expression of 10 stress response genes showed that 0.5 mg/kg SeMet might decrease cell damage in the hepatopancreas. Consequently, our findings suggest that higher levels of TMX in crayfish may cause hepatopancreatic cell toxicity, which can be harmful to human health; however, SeMet could mitigate these effects, providing an understanding of pesticide compounds and food safety.


Assuntos
Praguicidas , Selênio , Humanos , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Astacoidea , Tiametoxam/metabolismo , Estresse Oxidativo , Bioacumulação , Selenometionina , Praguicidas/metabolismo
5.
Pest Manag Sci ; 79(10): 3570-3580, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37160655

RESUMO

BACKGROUND: Thiamethoxam (TMX) is insecticidal, but also can trigger physiological and metabolic reactions of plant cycles. The objective of this work was to evaluate the physiological and metabolic effect of TMX on tea plants and its potential benefits. RESULTS: In this study, dose of TMX (0.09, 0.135 and 0.18 kg a.i./ha) were tested. Except for peroxidase (POD) and glutathione S-transferase (GST), chlorophyll, carotenoid, catalase (CAT) and malondialdehyde (MDA) were significantly affected compared with the controls. The CAT activity was increased by 3.38, 1.71, 2.91 times, respectively, under three doses of TMX treatment. The metabolic response between TMX treatment and control groups on the third day was compared using a widely targeted metabolomics. A total of 97 different metabolites were identified, including benzenoids, flavonoids, lipids and lipid-like molecules, organic acids and derivatives, organic nitrogen compounds, organic oxygen compounds, organoheterocyclic compounds, phenylpropanoids and polyketides, and others. Those metabolites were mapped on the perturbed metabolic pathways. The results demonstrated that the most perturbation occurred in flavone and flavonol biosynthesis. The beneficial secondary metabolites luteolin and kaempferol were upregulated 1.46 and 1.31 times respectively, which protect plants from biotic and abiotic stresses. Molecular docking models suggest interactions between TMX and flavonoid 3-O-glucosyltransferase. CONCLUSION: Thiamethoxam spray positively promoted the physiological and metabolic response of tea plants. And this work also provided the useful information of TMX metabolism in tea plants as well as rational application of insecticides. © 2023 Society of Chemical Industry.


Assuntos
Camellia sinensis , Inseticidas , Tiametoxam/química , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Chá/metabolismo
6.
Environ Toxicol Chem ; 42(5): 1167-1177, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861216

RESUMO

In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Beta vulgaris , Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiametoxam/toxicidade , Açúcares
7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430799

RESUMO

Thiamethoxam (TMX) is an effective neonicotinoid insecticide. However, its widespread use is detrimental to non-targeted organisms and water systems. This study investigates the biodegradation of this insecticide by Labrys portucalensis F11. After 30 days of incubation in mineral salt medium, L. portucalensis F11 was able to remove 41%, 35% and 100% of a supplied amount of TMX (10.8 mg L-1) provided as the sole carbon and nitrogen source, the sole carbon and sulfur source and as the sole carbon source, respectively. Periodic feeding with sodium acetate as the supplementary carbon source resulted in faster degradation of TMX (10.8 mg L-1); more than 90% was removed in 3 days. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. Nitro reduction, oxadiazine ring cleavage and dechlorination are the main degradation pathways proposed. After biodegradation, toxicity was removed as indicated using Aliivibrio fischeri and by assessing the synthesis of an inducible ß-galactosidase by an E. coli mutant (Toxi-Chromo test). L. portucalensis F11 was able to degrade TMX under different conditions and could be effective in bioremediation strategies.


Assuntos
Inseticidas , Tiametoxam , Biodegradação Ambiental , Inseticidas/metabolismo , Espectrometria de Massas em Tandem , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Carbono/metabolismo
8.
BMJ Case Rep ; 15(11)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446474

RESUMO

Neonicotinoid is a new class of systemic insecticides that are selectively toxic to insects. However, cases of human toxicity have been reported. A man in his 60s, who worked as a pest control operator (which required the use of thiamethoxam), presented with fever and headache. We investigated the levels of thiamethoxam and clothianidin in the blood and urine. Our results suggested that chronic thiamethoxam intoxication was caused by occupational inhalation exposure and environmental pollution. After cessation of insecticide use, the patient remained asymptomatic but had persistent oral dysesthesia and postural finger tremor, even at undetectable levels of thiamethoxam and clothianidin. This case report is the first to describe human thiamethoxam intoxication after occupational inhalation exposure. When similar symptoms are encountered and a history of insecticide use is confirmed, clinicians should consider the diagnosis of neonicotinoid intoxication.


Assuntos
Exposição por Inalação , Inseticidas , Masculino , Humanos , Tiametoxam , Neonicotinoides
9.
Appl Opt ; 61(21): 6186-6192, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256231

RESUMO

A model combining UV-visible (UV-Vis) spectroscopy and support vector regression (SVR) for the quantitative detection of thiamethoxam in tea is proposed. First, each original UV-Vis spectrum in the sample set is decomposed into some intrinsic mode functions (IMFs) and a residual via ensemble empirical mode decomposition. Next, the decomposed IMFs are reconstructed into high-frequency and low-frequency matrices, and the residuals are combined into a trend matrix. Then, the SVR is used to build regression sub-models between each matrix and the content of thiamethoxam in tea. Finally, the combination model is established by a weighted average of the sub-models. The prediction results are compared with SVR and SVR coupled with several preprocessing methods, and the results demonstrate the superiority of the proposed approach in the quantitative detection of thiamethoxam in tea.


Assuntos
Chá , Tiametoxam , Espectrofotometria Ultravioleta , Chá/química
10.
Pest Manag Sci ; 78(6): 2581-2587, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334156

RESUMO

BACKGROUND: Coffee (Coffea arabica L.) is one of the main commodities produced in Brazil. Insecticides like the (systemic) neonicotinoid thiamethoxam are widely used to suppress pest populations during coffee production, in particular the Neotropical leaf miner (Leucoptera coffeella Guérin-Mèneville & Perrottet, 1842) (Lepidoptera: Lyonetiidae). In addition to its efficacy against this pest species, thiamethoxam is also thought to be a bioactivator of plant metabolism, but has not yet been tested for such activity. Thus, the objectives of the present study were (1) to assess the concentration-response effects of thiamethoxam on the vegetative vigor of coffee seedlings (C. arabica 'Catuaí 144' cultivar) at different concentrations [2, 20, 40, 80 and 200 mg active ingredient (a.i.) kg-1 ] applied via soil drenching and (2) to evaluate if the plant response interferes with the effectiveness of thiamethoxam in controlling leaf miner populations. The morphophysiological traits of the coffee seedlings were evaluated 20, 40, 60 and 80 days after application, and leaf miner infestations were recorded starting 20 days after the insecticide application with the releasing of adults, and every 20 days afterwards. RESULTS: The results indicated that thiamethoxam has a deleterious effect on the morphophysiological traits of the plants compromising their development with increase in concentrations. However, leaf area exhibited a different pattern with a peak at 50 mg a.i. kg-1 consistent with thiamethoxam-induced hormesis (i.e. biphasic response with stimulatory effect at sublethal range of a toxic substance at the higher concentration). Nonetheless, such bioactivator effect did not affect thiamethoxan effectiveness against the leaf miner even at the lowest concentration tested. CONCLUSION: Thiamethoxan exhibited bioactivation effect on leaf at low concentration, but without compromising efficacy against leaf miner populations. Therefore, its proposed metabolism-boosting properties may encourage the unnecessary use of this insecticide, potentially leading to higher selection for insecticide resistance and an eventual decline in its effectiveness against the Neotropical leaf miner. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Café , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Plântula , Tiametoxam
11.
Environ Res ; 211: 113084, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35299036

RESUMO

Thiamethoxam (TMX) is commonly applied on leek plants by root irrigation. It might be taken up by leek plants and thus has lasting dietary risk. In this study, the uptake, translocation, and metabolism of TMX in leek plants were investigated. The results obtained from both the hydroponic and soil experiments indicated that TMX could be easily translocated upward and accumulated in leek shoots after being absorbed by roots. The total absorbed TMX amount (Mtotal) in leek plants from the tested soils varied greatly with its adsorption governed by soil characteristics. Interestingly, Mtotal was closely correlated with the concentration of TMX in in situ pore water, indicating that TMX in in situ pore water could be a useful approach to predict uptake of this chemical by leek plants from various soils. Profoundly, clothianidin (CLO) was detected with concentration of 0.07-1.54 mg/kg in roots and 0.27-4.12 mg/kg in shoots at 14 d, respectively, suggesting that TMX is easily converted into CLO in leek plants. The results showed that TMX used in soil is easily absorbed by leek and accumulated in edible parts accompanying with formation of CLO.


Assuntos
Inseticidas , Poluentes do Solo , Inseticidas/metabolismo , Cebolas/metabolismo , Solo , Poluentes do Solo/análise , Tiametoxam , Água
12.
Integr Environ Assess Manag ; 18(3): 709-721, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34292667

RESUMO

The ban imposed by the European Union on the use of neonicotinoids as sugar beet seed treatments was based on the exposure of bees to residues of neonicotinoids in pollen and nectar of succeeding crops. To address this concern, residues of thiamethoxam (TMX) and clothianidin (CTD) were analyzed in soil collected from fields planted in at least the previous year with thiamethoxam-treated sugar beet seed. This soil monitoring program was conducted at 94 sites across Germany in two separate years. In addition, a succeeding crop study assessed residues in soil, guttation fluid, pollen, and nectar sampled from untreated succeeding crops planted in the season after thiamethoxam seed-treated sugar beet at eight field sites across five countries. The overall mean residues observed in soil monitoring were 8.0 ± 0.5 µg TMX + CTD/kg in the season after the use of treated sugar beet seed. Residue values decreased with increasing time interval between the latest thiamethoxam or clothianidin application before sugar beet drilling and with lower application frequency. Residues were detected in guttation fluid (2.0-37.7 µg TMX/L); however, the risk to pollinators from this route of exposure is likely to be low, based on the reported levels of consumption. Residues of thiamethoxam and clothianidin in pollen and nectar sampled from the succeeding crops were detected at or below the limit of quantification (0.5-1 µg a.i./kg) in 86.7% of pollen and 98.6% of nectar samples and, unlike guttation fluid residues, were not correlated with measured soil residues. Residues in pollen and nectar are lower than reported sublethal adverse effect concentrations in studies with honeybee and bumble bee individuals and colonies fed only thiamethoxam-treated sucrose, and are lower than those reported to result in no effects in honeybees, bumble bees, and solitary bees foraging on seed-treated crops. Integr Environ Assess Manag 2022;18:709-721. © 2021 SYNGENTA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Beta vulgaris , Inseticidas , Animais , Abelhas , Produtos Agrícolas , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oxazinas/análise , Oxazinas/toxicidade , Néctar de Plantas/análise , Néctar de Plantas/química , Sementes/química , Solo , Açúcares/análise , Tiametoxam/análise , Verduras
13.
J Insect Sci ; 21(4)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374762

RESUMO

Honey bees continue to face challenges relating to the degradation of natural flowering habitats that limit their access to diverse floral resources. While it is known that nectar and pollen provide macronutrients, flowers also contain secondary metabolites (phytochemicals) that impart benefits including increased longevity, improved gut microbiome abundance, and pathogen tolerance. Our study aims to understand the role of phytochemicals in pesticide tolerance when worker bees were fed with sublethal doses (1 ppb and 10 ppb) of thiamethoxam (TMX), a neonicotinoid, in 20% (w/v) sugar solution supplemented with 25 ppm of phytochemicals-caffeine, kaempferol, gallic acid, or p-coumaric acid, previously shown to have beneficial impacts on bee health. The effect of phytochemical supplementation during pesticide exposure was context-dependent. With 1 ppb TMX, phytochemical supplementation increased longevity but at 10 ppb TMX, longevity was reduced suggesting a negative synergistic effect. Phytochemicals mixed with 1 ppb TMX increased mortality in bees of the forager-age group but with 10 ppb TMX, mortality of the inhive-age group increased, implying the possibility of accumulation effect in lower sublethal doses. Given that the phytochemical composition of pollen and nectar varies between plant species, we suggest that the negative impacts of agrochemicals on honey bees could vary based on the phytochemicals in pollen and nectar of that crop, and hence the effects may vary across crops. Analyzing the phytochemical composition for individual crops may be a necessary first step prior to determining the appropriate dosage of agrochemicals so that harm to bees Apis mellifera L. is minimized while crop pests are effectively controlled.


Assuntos
Abelhas , Suplementos Nutricionais , Inseticidas , Compostos Fitoquímicos , Tiametoxam , Animais , Cafeína , Ácidos Cumáricos , Ácido Gálico , Quempferóis
14.
Analyst ; 146(6): 1986-1995, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33502393

RESUMO

Aptamers, which are called chemical antibodies for their high affinity and specificity to targets, have great potential as analytical tools to detect pesticides. In this work, a DNA aptamer for thiamethoxam was isolated by an improved SELEX (systematic evolution of ligands by exponential enrichment) strategy, in which the ssDNA library was fixed on streptavidin-agarose beads through a short biotin labeled complementary strand. After 13 rounds of selection, the random ssDNA pool was successfully enriched. Three sequences were chosen as aptamer candidates through sequencing and analysis and were transformed into fluorescent probes to evaluate their interactions with thiamethoxam. A fluorescent turn-on aptasensor for thiamethoxam based on the best aptamer (FAM-Thi13) and a short quenching strand were further designed and showed a quantitative linear range from 10 to 1000 nM with a detection limit of 1.23 nM for thiamethoxam. Molecular docking and molecular dynamics were used to investigate the binding site of the main probe of the aptasensor (FAM-Thi13) and thiamethoxam. Satisfactory results were also obtained in quantifying thiamethoxam in environmental water samples by the developed fluorescent aptasensor.


Assuntos
Aptâmeros de Nucleotídeos , Praguicidas , DNA de Cadeia Simples/genética , Simulação de Acoplamento Molecular , Técnica de Seleção de Aptâmeros , Tiametoxam
15.
Food Chem ; 344: 128579, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199115

RESUMO

The absorption, distribution, metabolism and primary risk evaluation data of four neonicotinoids and two organophosphate insecticides in tea plant (Camellia sinensis L.) were compared. 22 neonicotinoid metabolites and 2 organophosphate metabolites were identified. The amount ratio of each neonicotinoid metabolite to its corresponding parent (M/P) was lower than 0.076 in the treated time. The organophosphates (omethoate and methamidophos) increased sharply, with M/Ps as high as 1.111 and 0.612. The risks evaluation of insecticides and their metabolites in treated leaves on day seven showed that the chronic risk was from the lowest 0.0759 (clothianidin) to highest 43.6409% (dimethoate), and the acute risk was highest 0.0370 for all targets. The calculated combined toxicity of leaves treated with acephate reached 1.5 folds in mature, 1.5 folds in tender leaves than no metabolites, and which of dimethoate were 2.1 folds in mature and 3.7 folds in tender leaves.


Assuntos
Camellia sinensis/química , Inseticidas/análise , Neonicotinoides/análise , Organofosfatos/análise , Camellia sinensis/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Inseticidas/metabolismo , Neonicotinoides/química , Neonicotinoides/metabolismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Organofosfatos/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Risco , Espectrometria de Massas em Tandem , Tiametoxam/análise , Tiametoxam/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2835-2841, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-32627457

RESUMO

Leaf miner is one of the major pests on safflower, which causes yield loss and poor quality seriously. "Weihonghua", "nine safflower varieties" and "three chemical insecticides" as materials that used to evaluate variety and regularity of leaf miner, safflower resistant level, and different proportions insecticides in field efficiency test. The results showed that Liriomyza sativae and L. huidobrensis accounted for 80%, the peak period of two pests was all in July; but Phytomyza horticola is relative less, its peak period occured in June. Three were great difference of resistance to leaf miner among safflower varieties, FQ12 and YJ65 expressed higher resistibility to leaf miner by ratio method. With abamectin 2% emulsifiable concentrate diluted for 2 000 times, or the mixture three insecticides(bifenthrin 20% water emulsions, thiamethoxam 25% water dispersible granule, abamectin 2% emulsifiable concentrate=1∶1∶1) diluted for 3 000 times, which were sprayed on leaves at squaring stage and lethal rate was 96% after 48 h in the study. Through comparative study on the variety and regularity of leaf miner, screen for resistant varieties to leaf miner and for high efficiency pesticide. The study provides theoretical basis and reference for integrated pest management of leaf miner.


Assuntos
Carthamus tinctorius , Dípteros , Inseticidas , Praguicidas , Animais , Tiametoxam
17.
J Sci Food Agric ; 100(13): 4921-4929, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32472940

RESUMO

BACKGROUND: The use of pesticides during tea plant cultivation helps agricultural production and prevents and controls pests, diseases and weeds. It is of the utmost importance to balance pesticide application with tea quality, safety and consumer health. The uptake of pesticides into plants may lead to the presence of residues that are hazardous to human health, especially for some foliar-applied insecticides. The movability or penetration behavior of a pesticide remains unknown after it has been sprayed on a tea leaf. RESULTS: Two organophosphate (acephate, trichlorfon) and three neonicotinoid pesticides (imidacloprid, thiamethoxam and acetamiprid) were confirmed with respect to their removal from the treated fresh leaves of tea saplings via washing in a phytotron. Four of the targets have little penetrative ability into tea leaves, mainly existing (> 92%) on the tea leaf surface, except for trichlorfon (> 70%), for 30 days. With higher vapor pressures, trichlorfon and acetamiprid had relatively higher penetration ratios of 8.63-29.60% and 0.28-8.03% respectively. Two organophosphate insecticides were found to degrade more quickly, with lower final amounts of residues on and in the whole leaf compared to the neonicotinoid pesticides. In a field test, these residues could be reduced by 45-72% after a pre-harvest interval of 3 days, and by 16-89% after 7 days, when the fresh tea shoots were sprayed with 2 or 4 L m-2 water. CONCLUSION: Pesticides with different structures have different penetration abilities on the tea leaf surface, and some pesticides in commercial tea can be reduced by spraying with water before fresh leaves are picked. © 2020 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Inseticidas/análise , Resíduos de Praguicidas/análise , Folhas de Planta/química , Camellia sinensis/química , Contaminação de Alimentos/análise , Neonicotinoides/análise , Nitrocompostos/análise , Chá/química , Tiametoxam/análise , Água/análise
18.
Arq. Inst. Biol ; 87: e0392019, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1121057

RESUMO

Residues of plant protection products have been reported in floral resources such as pollen, but the potential risks of pollinator exposure are still unclear. Therefore, studies are needed to assess the risk of exposure/intoxication of bees, as they collect these resources to maintain their colony. The present study used a randomized design with five treatments: thiamethoxam, clothianidin, imidacloprid, fipronil, and a control. Pollen was collected from two soybean plants per repetition during their entire flowering period, mixed with 8 g of sugar cake (distilled water + sugar), and offered to adult bees that were then followed for the assessment of mortality over time (1, 2, 4, 8, 16, 24 and 32 h after initial exposure). Among the generalized linear models evaluated, the beta binomial model was the best fit. The treatments were compared within each time period by overlapping credibility intervals using Bayesian inference. The probability of bee mortality was low in the first hours of evaluation and gradually increased over time in all chemical treatments. When comparing the means of the beta-binomial model, no statistical differences among treatments was observed, indicating a mortality similar to that of the control group.(AU)


Resíduos de produtos de proteção de plantas têm sido relatados em recursos florais como o pólen, mas os potenciais riscos da exposição aos polinizadores ainda não estão claros. Portanto, tornam-se necessários estudos para avaliar o risco da exposição/intoxicação das abelhas, já que necessitam destes recursos para a manutenção da colônia. O presente estudo utilizou um delineamento inteiramente ao acaso com cinco tratamentos: tiametoxam, clotianidina, imidacloprid, fipronil e testemunha. O pólen foi coletado durante todo o período de floração de duas plantas de soja por repetição e incorporado a 8 g de pasta candi (água destilada + açúcar), e oferecido às abelhas adultas e logo após foi avaliada a mortalidade ao longo do tempo (1, 2, 4, 8, 16, 24 e 32 h após a exposição inicial). Dentre os modelos lineares generalizados testados o modelo do tipo beta binomial foi o que melhor se ajustou. Os tratamentos foram contrastados dentro de cada intervalo de tempo pela sobreposição dos intervalos de credibilidade através Inferência Bayesiana. A probabilidade de mortalidade das abelhas foi pequena nas primeiras horas de avaliação, aumentando gradativamente ao longo do tempo em todos os tratamentos. Ao comparar as médias do modelo beta-binomial, não foram observadas diferenças estatísticas entre os tratamentos, indicando uma mortalidade padrão inclusive na testemunha.(AU)


Assuntos
Pólen , Glycine max , Abelhas , Sementes , 26016 , Mortalidade , Tiametoxam , Himenópteros
19.
J Agric Food Chem ; 67(26): 7538-7546, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180663

RESUMO

Thiamethoxam (TMX) has already been proven to have a physiological effect in plant tissue or cell expect for the insecticidal activity. In our previous study, TMX was verified to be metabolized by tea cells in either a suspension culture or tea plant into several metabolites. Here, tea cell suspension cultures were treated for 45 days to investigate the metabolite effects in both the tea cells and the culture supernatants by nontargeted metabolomics. Using multivariate analysis (PCA and OPLS-DA), all treatment and control groups could be clearly separated. Inside the cells, 113 metabolites were found to be up-regulated while 122 were down-regulated, when compared with untreated cells. In the culture supernatant, there were 128 up-regulated and 35 down-regulated metabolites, compared to untreated cultures. KEGG searches revealed that the alanine, aspartate, and glutamate metabolic pathways were strongly affected by TMX metabolism within the tea cell. Molecular docking models showed that (i) 4-aminobutyrate aminotransferase may be related to the formation of 2-chloro-thiazole-5-carboxylic acid and (ii) 3'(2'),5'-bisphosphate nucleotidase may be able to interact with TMX. This study can help us to understand the interaction mechanism of pesticides with plant cells.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Inseticidas/metabolismo , Tiametoxam/metabolismo , Células Cultivadas , Inseticidas/química , Redes e Vias Metabólicas , Metabolômica , Simulação de Acoplamento Molecular , Tiametoxam/química
20.
Environ Entomol ; 48(2): 351-362, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30753426

RESUMO

Worldwide studies have used the technique of pollen trapping, collecting pollen loads from returning honey bee (Apis mellifera L.) (Hymenoptera: Apidae) foragers, to evaluate the exposure of honey bees to pesticides through pollen and as a biomonitoring tool. Typically, these surveys have found frequent contamination of pollen with multiple pesticides, with most of the estimated risk of acute oral toxicity to honey bees coming from insecticides. In our survey of pesticides in trapped pollen from three commercial ornamental plant nurseries in Connecticut, we found most samples within the range of acute toxicity in a previous state pollen survey, but a few samples at one nursery with unusually high acute oral toxicity. Using visual sorting by color of the pollen pellets collected in two samples from this nursery, followed by pesticide analysis of the sorted pollen and palynology to identify the plant sources of the pollen with the greatest acute toxicity of pesticide residues, we were able to associate pollen from the plant genus Spiraea L. (Rosales: Rosaceae) with extraordinarily high concentrations of thiamethoxam and clothianidin, and also with high concentrations of acephate and its metabolite methamidophos. This study is the first to trace highly toxic pollen collected by honey bees to a single plant genus. This method of tracking high toxicity pollen samples back to potential source plants could identify additional high-risk combinations of pesticide application methods and timing, movement into pollen, and attractiveness to bees that would be difficult to identify through modeling each of the contributing factors.


Assuntos
Abelhas , Resíduos de Praguicidas/análise , Pólen/química , Spiraea , Animais , Jardinagem , Guanidinas/análise , Inseticidas/análise , Neonicotinoides/análise , Tiametoxam/análise , Tiazóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA