Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Fitoterapia ; 148: 104801, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33309650

RESUMO

Three new sesquiterpenoids, peniterpenoids A - C (1-3), together with six known metabolites (4-9) were isolated from an entomogenous fungus Penicillium janthinellum (LB1.20090001) collected from a wheat cyst nematode. The structures of the new compounds were elucidated based on NMR and HRESIMS spectroscopic analyses. The absolute configuration of the C-8 secondary alcohol of peniterpenoid B (2) was determined by [Rh2(OCOCF3)4]-induced ECD experiment. Subsequently, the antimicrobial and DPPH scavenging activities were determined. Compounds 6-8 exhibited moderate antibacterial activities against Staphylococcus aureus (CGMCC1.2465) with MIC values of 25.0, 50.0 and 12.5 µg/mL, respectively.


Assuntos
Antibacterianos/farmacologia , Nematoides/microbiologia , Penicillium/química , Sesquiterpenos/farmacologia , Triticum/parasitologia , Animais , Antibacterianos/isolamento & purificação , China , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
2.
J Appl Toxicol ; 40(10): 1342-1352, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32346895

RESUMO

Pantoea agglomerans is a Gram-negative bacterium that is ubiquitous in the environment, colonizing animals, humans, and numerous plants, including cotton and wheat. A lipopolysaccharide-containing fermented wheat flour extract from P. agglomerans (Somacy-FP100) is proposed for use as a food ingredient for individuals seeking foods for healthy aging. Previously published genotoxicity studies with Somacy-FP100 reported its lack of genotoxicity in vitro, but a subchronic toxicity study has not yet been performed. Therefore, to demonstrate the safety of Somacy-FP100 for use as a food ingredient, a 90-day oral (gavage) toxicity study in rats was conducted. Male and female Han Wistar rats were administered vehicle (control) or Somacy-FP100 at 500, 1500, or 4500 mg/kg body weight/day at a dose volume of 10 mL/kg body weight, for at least 90 days. No test article-related adverse clinical signs or effects on body weight, food consumption, or clinical pathology were observed, and there were no macroscopic or microscopic findings related to the test article. Therefore, 4500 mg/kg body weight/day (the highest dose tested and highest feasible dose) was established as the no-observed-adverse-effect level. This absence of subchronic toxicity, in addition to the previously reported lack of genotoxicity, demonstrates the safety of Somacy-FP100 for use as a food ingredient.


Assuntos
Grão Comestível/parasitologia , Infecções por Enterobacteriaceae/etiologia , Farinha/toxicidade , Lipopolissacarídeos/toxicidade , Pantoea/química , Extratos Vegetais/toxicidade , Triticum/parasitologia
3.
PLoS One ; 15(4): e0231005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243466

RESUMO

Silicon (Si) supplementation is well-known for enhancing plant resistance to insect pests, however, only recently studies revealed that Si accumulation in the plant not only confers a mechanical barrier to insect feeding, but also primes jasmonic acid-dependent defenses. Here, we examined whether Si supplementation alters wheat volatile emissions that influence the bird cherry-oat aphid (Rhopalosiphum padi) olfactory preference and the aphid parasitoid Lysiphlebus testaceipes. Even though Si accumulation in wheat did not impact aphid performance, we found that R. padi preferred constitutive volatiles from-Si wheat over those emitted by +Si wheat plants. In Y-tube olfactometer bioassays, the parasitoid was attracted to volatiles from +Si uninfested wheat, but not to those from-Si uninfested wheat. +Si and-Si aphid-infested plants released equally attractive blends to the aphid parasitoid; however, wasps were unable to distinguish +Si uninfested plant odors from those of aphid-infested treatments. GC-MS analyses revealed that +Si uninfested wheat plants emitted increased amounts of a single compound, geranyl acetone, compared to -Si uninfested wheat, but similar to those emitted by aphid-infested treatments. By contrast, Si supplementation in wheat did not alter composition of aphid-induced plant volatiles. Our results show that changes in wheat volatile blend induced by Si accumulation mediate the non-preference behavior of the bird cherry-oat aphid and the attraction of its parasitoid L. testaceipes. Conversely to the literature, Si supplementation by itself seems to work as an elicitor of induced defenses in wheat, and not as a priming agent.


Assuntos
Afídeos , Silício/farmacologia , Triticum/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Vespas , Animais , Afídeos/fisiologia , Controle de Insetos/métodos , Silício/metabolismo , Olfato , Triticum/efeitos dos fármacos , Triticum/metabolismo
4.
Bioengineered ; 10(1): 292-305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31284815

RESUMO

In the present study, Probit, Cauchy Fractional and three types of Log methods, i.e., Logit, Log-log, and Complementary log-log were employed to model the feeding deterrence of the lesser grain borer, Rhyzopertha dominica (F) (Coleoptera: Bostrichidae), when fed latex protein, crude flavonoid fraction, 3-O-rutinosides of quercetin, kaempferol and isorhamnetin, isolated from Calotropis procera (Ait.) (Gentianales: Asclepiadaceae). A nutritional study with treated flour discs at sub-lethal concentrations indicated that the tested natural products negatively affected the feeding behavior of the lesser grain borer, causing high feeding deterrent indices. Our results assure that Probit, Logit and Clog-log model the feeding deterrent indices with high goodness of fit. The models aim to support the management of the test insect when fed grains treated with sub-lethal doses of the tested phytochemicals in order to develop a viable, precise and long-term strategy to minimize the excessive reliance on the chemical pesticides currently in use.


Assuntos
Produtos Biológicos/farmacologia , Calotropis/química , Besouros/efeitos dos fármacos , Quempferóis/farmacologia , Modelos Estatísticos , Quercetina/análogos & derivados , Quercetina/farmacologia , Animais , Besouros/fisiologia , Grão Comestível/parasitologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Glicosídeos/farmacologia , Larva/efeitos dos fármacos , Larva/fisiologia , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Triticum/parasitologia
5.
Molecules ; 24(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121976

RESUMO

A new lignan (T4) and three known lignans (T1, T2, and T3) were isolated from the methanol extract of the roots of Phryma leptostachya using bioassay-guided method, and their structures were identified as phrymarolin I (T1), II (T2), haedoxan A (T3), and methyl 4-((6a-acetoxy-4-(6-methoxybenzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan-1-yl)oxy)-1-hydroxy-2,2-dimethoxy-5-oxocyclopent-3-ene-1-carboxylate (T4) byNMR and ESI-MS spectral data. Bioassay results revealed that haedoxan A exhibited remarkably high insecticidal activity against Mythimna separata with a stomach toxicity LC50 value of 17.06 mg/L and a topical toxicity LC50 value of 1123.14 mg/L at 24 h, respectively. Phrymarolin I and compound T4 also showed some stomach toxicity against M. separata with KD50 values of 3450.21 mg/L at 4 h and 2807.10 mg/L at 8 h, respectively. In addition, phrymarolin I and haedoxan A exhibited some stomach toxicity against Plutella xylostella with an LC50 value of 1432.05 and 857.28 mg/L at 48 h, respectively. In conclusion, this study demonstrated that lignans from P. leptostachya are promising as a novel class of insecticides or insecticide lead compounds for developing botanical pesticides.


Assuntos
Inseticidas/isolamento & purificação , Lamiales/química , Lignanas/isolamento & purificação , Animais , Benzodioxóis/química , Benzodioxóis/isolamento & purificação , Benzodioxóis/farmacologia , Brassica/parasitologia , Inseticidas/química , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Triticum/parasitologia
6.
PLoS One ; 12(9): e0184639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953894

RESUMO

Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.


Assuntos
Afídeos/efeitos dos fármacos , Produtos Agrícolas/parasitologia , Inseticidas/farmacologia , Moringa/química , Extratos Vegetais/farmacologia , Triticum/parasitologia , Animais , Paquistão
7.
Exp Parasitol ; 167: 94-102, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27240755

RESUMO

A gene encoding fatty acid- and retinoid-binding protein was isolated from the cereal cyst nematode Heterodera avenae and the biochemical function of the protein that it encodes was analysed. The full-length cDNA of the Ha-far-1 gene is 827 bp long and includes a 22- nucleotide trans-spliced leader sequence (SL1) at its 5-end. The genomic clone of Ha-far-1 consists of eight exons separated by seven introns, which range in size from 48 to 186 bp. The Ha-far-1 cDNA contains an open reading frame encoding a 191 amino acid protein, with a predicted secretory signal peptide. Sequence analysis showed that Ha-FAR-1 has highest similarity to the Gp-FAR-1 protein from the potato cyst nematode, Globodera pallida and that the protein was grouped with all homologues from other plant-parasitic nematodes in a phylogenetic analysis. Fluorescence-based ligand binding analysis confirmed that the recombinant Ha-FAR-1 protein was able to bind fatty acids and retinol. Spatial and temporal expression assays showed that the transcripts of Ha-far-1 accumulated mainly in the hypodermis and that the gene is most highly expressed in third-stage juveniles of H. avenae. Fluorescence immunolocalization showed that the Ha-FAR-1 protein was present on the surface of the infective second-stage juveniles of H. avenae. Nematodes treated with dsRNA corresponding to Ha-far-1 showed significantly reduced reproduction compared to nematodes exposed to dsRNA from a non-endogenous gene, suggesting that Ha-far-1 may be an effective target gene for control of H. avenae using an RNAi strategy.


Assuntos
Proteínas de Ligação a Ácido Graxo/isolamento & purificação , Proteínas de Helminto/isolamento & purificação , Proteínas de Ligação ao Retinol/isolamento & purificação , Tylenchoidea/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , DNA Complementar/química , DNA de Helmintos/isolamento & purificação , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Hibridização In Situ , Ligantes , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Ligação ao Retinol/química , Proteínas de Ligação ao Retinol/genética , Alinhamento de Sequência , Transcrição Gênica , Triticum/parasitologia , Tylenchoidea/genética
8.
J Agric Food Chem ; 64(18): 3501-7, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27119432

RESUMO

Many crops are ill-protected against insect pests during storage. To protect cereal grains from herbivores during storage, pesticides are often applied. While pesticides have an undoubtable functionality, increasing concerns are arising about their application. In the present study, we investigated a bioinspired cyanogenic grain coating with amygdalin as cyanogenic precursor mimicking the feeding-triggered release of hydrogen cyanide (HCN) found for example in bitter almonds. The multilayer coating consisted of biodegradable polylactic acid with individual layers containing amygdalin or ß-glucosidase which is capable of degrading amygdalin to HCN. This reaction occurred only when the layers were ruptured, e.g., by a herbivore attack. Upon feeding coated cyanogenic wheat grains to Tenebrio molitor (mealworm beetle), Rhizopertha dominica (lesser grain borer), and Plodia interpunctella (Indianmeal moth), their reproduction as well as consumption rate were significantly reduced, whereas germination ability increased compared to noncoated grains. In field experiments, we observed an initial growth delay compared to uncoated grains which became negligible at later growth stages. The here shown strategy to artificially apply a naturally occurring defense mechanisms could be expanded to other crops than wheat and has the potential to replace certain pesticides with the benefit of complete biodegradability and increased safety during storage.


Assuntos
Besouros/efeitos dos fármacos , Cianeto de Hidrogênio/farmacologia , Mariposas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunus/química , Triticum/parasitologia , Amigdalina/farmacologia , Animais , Besouros/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mariposas/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/parasitologia , Triticum/química , Triticum/crescimento & desenvolvimento
9.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26022628

RESUMO

The bird cherry-oat aphid Rhopalosiphum padi (L.) transmits the nonpersistent Potato virus Y (PVY) to seed potatoes. Planting a nonvirus host plant around the main crop can reduce PVY incidence, because aphids tend to land in high numbers at the edge of a field and the crop border acts as a virus sink. This study determined R. padi landing and settling preferences and reproductive rates on three cultivars each of maize and wheat compared with potato in the laboratory as a basis for identifying an attractive crop border plant. Aphids were reared on maize and wheat to control for bias due to previous experience. Irrespective of origin, alates preferred to land almost exclusively on maize and wheat rather than on potato cultivars in choice experiments. Aphid settling on the maize and wheat cultivars depended on aphid origin. In no-choice experiments, R. padi produced the highest number of offspring on the wheat cultivars, irrespective of origin. Plant nitrogen content and trichome density did not influence R. padi reproduction. The study demonstrates that host plant preference of aphids may vary between plant cultivars and can therefore influence the effectiveness of a crop border. The high landing rate but low reproduction suggest that maize cultivars '6Q-121' and '78-15B' could be suitable crop border plants in regions where R. padi is abundant. Before testing potential crop border plants in the field, cultivars should be screened using aphid landing, settling and reproduction as selection criteria.


Assuntos
Afídeos/fisiologia , Comportamento Apetitivo , Solanum tuberosum/parasitologia , Triticum/parasitologia , Zea mays/parasitologia , Animais , Controle de Insetos , Insetos Vetores , Potyvirus , Reprodução , Solanum tuberosum/virologia
10.
PLoS One ; 9(2): e89119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586535

RESUMO

Prophylactic use of broad-spectrum insecticides is a common feature of broad-acre grains production systems around the world. Efforts to reduce pesticide use in these systems have the potential to deliver environmental benefits to large areas of agricultural land. However, research and extension initiatives aimed at decoupling pest management decisions from the simple act of applying a cheap insecticide have languished. This places farmers in a vulnerable position of high reliance on a few products that may lose their efficacy due to pests developing resistance, or be lost from use due to regulatory changes. The first step towards developing Integrated Pest Management (IPM) strategies involves an increased efficiency of pesticide inputs. Especially challenging is an understanding of when and where an insecticide application can be withheld without risking yield loss. Here, we quantify the effect of different pest management strategies on the abundance of pest and beneficial arthropods, crop damage and yield, across five sites that span the diversity of contexts in which grains crops are grown in southern Australia. Our results show that while greater insecticide use did reduce the abundance of many pests, this was not coupled with higher yields. Feeding damage by arthropod pests was seen in plots with lower insecticide use but this did not translate into yield losses. For canola, we found that plots that used insecticide seed treatments were most likely to deliver a yield benefit; however other insecticides appear to be unnecessary and economically costly. When considering wheat, none of the insecticide inputs provided an economically justifiable yield gain. These results indicate that there are opportunities for Australian grain growers to reduce insecticide inputs without risking yield loss in some seasons. We see this as the critical first step towards developing IPM practices that will be widely adopted across intensive production systems.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/farmacologia , Agricultura/métodos , Agricultura/organização & administração , Agricultura/tendências , Animais , Artrópodes/crescimento & desenvolvimento , Austrália , Eficiência Organizacional , Ácidos Graxos Monoinsaturados , Humanos , Controle Biológico de Vetores/métodos , Plantas/efeitos dos fármacos , Óleo de Brassica napus , Triticum/efeitos dos fármacos , Triticum/parasitologia
11.
Zhongguo Zhong Yao Za Zhi ; 37(9): 1174-9, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22803355

RESUMO

OBJECTIVE: To study the influence of host species on growth and development and active component content of Thesium chinense. METHOD: Plant morphology and active component content of T. chinense grown with different hosts were measured. The hosts were evaluated by using index-sum method. RESULT: Hosts significantly promoted the growth of T. chinense by increasing height, per plant weight, stem diameter, leaf area, the number of seed and haustorium,and decreased RW/SW ratio compared to without host treatment. Considerable differences existed among the effect of different host species treatments. Synthetical evaluation score of Gnaphlium affine was the highest (37), followed by Imperata cylindrical and Prunella vulgaris (36). It is suggested that they were superior hosts for T. chinense. But the scores of Triticum aestivum (25) and Eremochloa ophiuroides (17) were lower, so they were unsuited hosts for T. chinense. CONCLUSION: Hosts significantly promoted the growth of T. chinense. Considerable differences existed among the growth and development of T. chinense grown with different hosts, as well as active component content. Gnaphlium affine, Imperata cylindrical and Prunella vulgaris were superior hosts for T. chinense. While Triticum aestivum and Eremochloa ophiuroides were unsuited hosts for T. chinense.


Assuntos
Santalaceae/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Poaceae/crescimento & desenvolvimento , Poaceae/parasitologia , Prunella/crescimento & desenvolvimento , Prunella/parasitologia , Santalaceae/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/parasitologia
12.
ScientificWorldJournal ; 2012: 639854, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606054

RESUMO

In an attempt to find alternative control methods for stored products insects, extracts of seven plant species (Cassia senna, Caesalpinia gilliesii, Thespesia populnea var. acutiloba, Chrysanthemum frutescens, Euonymus japonicus, Bauhinia purpurea, and Cassia fistula) were evaluated under laboratory conditions for their ability to protect wheat (Triticum spp.) grains against Trogoderma granarium insect. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis was carried to identify the chemical components of the most effective plant extract against T. granarium. Furthermore, the safety of the most effective plant extract was evaluated with respect to biochemical and histological changes in treated rats relative to control. The results revealed that, the tested botanical extracts showed high efficiency against T. granarium with respect to mortality and progeny of the adults. C. senna was the most effective botanical extract against T. granarium. The GC-MS analysis of the most effective plant extract showed the presence of different bioactive compounds that is known by its insecticidal activity. The most effective plant extract showed no toxicity on treated rats relative to control with respect to biochemical and histological changes. The results suggest the ability of using these plant extracts for wheat grains protection as a safe alternative to insecticides.


Assuntos
Besouros/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Extratos Vegetais/farmacologia , Sementes/parasitologia , Triticum/parasitologia , Animais , Chrysanthemum/química , Avaliação Pré-Clínica de Medicamentos , Euonymus/química , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Malation/farmacologia , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar , Sementes/química , Senna/química , Testes de Toxicidade , Triticum/química
13.
Pest Manag Sci ; 67(4): 380-4, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21360643

RESUMO

BACKGROUND: Insect growth regulators are promising alternatives to traditional pesticides in stored grain. The efficacy of the juvenile hormone analogue methoprene was evaluated as a layer treatment in a laboratory experiment for control of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) in wheat, rice and maize. RESULTS: Adults of R. dominica were placed in vials containing 33, 26 and 29 g (to a depth of 6.5 cm) of wheat, rice and maize, respectively, that was entirely or partially treated with 1, 5 or 10 mg kg(-1) methoprene. In wheat and rice, the layer treatments were not as effective as the whole-grain treatment, but there was decreased progeny production as the application rate increased. However, on maize the partial treatments were as effective as the whole-grain treatment at 5 and 10 mg kg(-1) . CONCLUSIONS: The results suggest that partial layer treatments with methoprene can be used to control R. dominica on maize but may not be effective for control of this species on wheat and rice.


Assuntos
Besouros/efeitos dos fármacos , Metoprene/farmacologia , Oryza/parasitologia , Controle de Pragas/métodos , Doenças das Plantas/parasitologia , Triticum/parasitologia , Zea mays/parasitologia , Animais , Besouros/crescimento & desenvolvimento
14.
J Econ Entomol ; 103(2): 516-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429469

RESUMO

The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.


Assuntos
Himenópteros/fisiologia , Fósforo/metabolismo , Fotossíntese/fisiologia , Triticum/fisiologia , Triticum/parasitologia , Água/fisiologia , Animais , Ambiente Controlado , Folhas de Planta/fisiologia , Caules de Planta/parasitologia , Estresse Fisiológico , Fatores de Tempo
15.
Ying Yong Sheng Tai Xue Bao ; 19(6): 1331-6, 2008 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-18808028

RESUMO

Sitobion avenae (Fabricius) is one of the most important pests of winter wheat in China. An investigation was conducted at the experimental farm of Shandong Agricultural University to study the effects of intercropping oilseed rape or garlic with winter wheat on the population dynamics of S. avenae and its main natural enemies. The results showed that in most cases, the population density of S. avenae apterae was significantly lower in wheat-oilseed rape and wheat-garlic intercropping fields than in wheat monoculture field. The population density of ladybeetle and the ratio of ladybeetle to S. avenae were higher in wheat-oilseed rape intercropping field. Before May 2, the population density of aphid parasitoids in wheat-oilseed rape intercropping field was higher than that in wheat-garlic intercropping field and wheat monoculture field; and after May 5, the mummy rate of aphid parasitoids and the ratio of aphid parasitoids to S. avenae in wheat-oilseed rape intercropping field were significantly higher than those in the other two fields. In wheat-garlic intercropping field, S. avenae alatae had a higher population amount, but no significant change was observed in the population amounts of ladybeetle and aphid parasitoids. It was concluded that wheat-oilseed rape or wheat-garlic intercropping could control S. avenae in wheat fields.


Assuntos
Afídeos/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Alho/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/parasitologia , Agricultura/métodos , Animais , Controle Biológico de Vetores , Dinâmica Populacional , Comportamento Predatório/fisiologia
16.
J Food Prot ; 70(1): 172-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17265877

RESUMO

The essential oil of Cymbopogon martinii was tested for its potency as a botanical pesticide to protect stored wheat (Triticum aestivum) and gram (garbanzo bean, Cicer arietinum) from insect infestation. The C. martinii oil was potent as a fumigant in stored gram. The oil was an effective repellent against the beetles Callosobruchus chinensis and Tribolium castaneum. Geraniol, the major component of the oil, was not as effective as the oil itself. C. martinii oil significantly affected oviposition, adult development, and mortality of C. chinensis in cow peas (Vigna unguiculata). The C. martinii oil when used as fumigant did not affect viability, germination, and seedling growth of gram. Because of its insecticidal and semiochemical nature, the oil could be used as an alternative to synthetic pesticides in an integrated pest management program to protect stored food commodities.


Assuntos
Besouros/efeitos dos fármacos , Cymbopogon/química , Conservação de Alimentos/métodos , Controle de Insetos/métodos , Inseticidas/farmacologia , Óleos de Plantas/farmacologia , Animais , Cicer/parasitologia , Besouros/crescimento & desenvolvimento , Humanos , Repelentes de Insetos , Controle Biológico de Vetores , Triticum/parasitologia
17.
Transgenic Res ; 14(5): 665-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16245157

RESUMO

Serine proteinase inhibitors (IP's) are proteins found naturally in a wide range of plants with a significant role in the natural defense system of plants against herbivores. The question addressed in the present study involves assessing the ability of the serine proteinase inhibitor in combating nematode infestation. The present study involves engineering a plant serine proteinase inhibitor (pin2) gene into T. durum PDW215 by Agrobacterium-mediated transformation to combat cereal cyst nematode (Heterodera avenae) infestation. Putative T(0) transformants were screened and positive segregating lines analysed further for the study of the stable integration, expression and segregation of the genes. PCR, Southern analysis along with bar gene expression studies corroborate the stable integration pattern of the respective genes. The transformation efficiency is 3%, while the frequency of escapes was 35.71%. chi(2) analysis reveals the stable integration and segregation of the genes in both the T(1) and T(2) progeny lines. The PIN2 systemic expression confers satisfactory nematode resistance. The correlation analysis suggests that at p < 0.05 level of significance the relative proteinase inhibitor (PI) values show a direct positive correlation vis-à-vis plant height, plant seed weight and also the seed number.


Assuntos
Solanum tuberosum/genética , Triticum/genética , Triticum/parasitologia , Tylenchida/patogenicidade , Animais , Sequência de Bases , DNA Recombinante/genética , Expressão Gênica , Genes de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Inibidores de Proteases/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA