Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101408

RESUMEN

For molecules and solids containing heavy elements, accurate electronic-structure calculations require accounting not only for electronic correlations but also for relativistic effects. In molecules, relativity can lead to severe changes in the ground-state description. In solids, the interplay between both correlation and relativity can change the stability of phases or it can lead to an emergence of completely new phases. Traditionally, the simplest illustration of relativistic effects can be done either by including pseudopotentials in non-relativistic calculations or alternatively by employing large all-electron basis sets in relativistic methods. By analyzing different electronic properties (band structure, equilibrium lattice constant and bulk modulus) in semiconductors and insulators, we show that capturing the interplay of relativity and electron correlation can be rather challenging in Green's function methods. For molecular problems with heavy elements, we also observe that similar problems persist. We trace these challenges to three major problems: deficiencies in pseudopotential treatment as applied to Green's function methods, the scarcity of accurate and compact all-electron basis sets that can be converged with respect to the basis-set size, and linear dependencies arising in all-electron basis sets, particularly when employing Gaussian orbitals. Our analysis provides detailed insight into these problems and opens a discussion about potential approaches to mitigate them.

2.
J Chem Theory Comput ; 20(11): 4579-4590, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38778459

RESUMEN

The fully self-consistent GW (scGW) method with an iterative solution of the Dyson equation provides a consistent approach for describing the ground and excited states without any dependence on the mean-field reference. In this work, we present a relativistic version of scGW for molecules containing heavy elements using the exact two-component (X2C) Coulomb approximation. We benchmark SOC-81 data set containing closed shell heavy elements for the first ionization potential using the fully self-consistent GW as well as one-shot GW. The self-consistent GW provides superior results compared to G0W0 with PBE reference and comparable results to G0W0 with PBE0 while also removing the starting point dependence. The photoelectron spectra obtained at the X2C level demonstrate very good agreement with the experimental spectra. We also observe that scGW provides very good estimation of ionization potential for the inner d-shell orbitals. Additionally, using the well-conserved total energy, we investigate the equilibrium bond length and harmonic frequencies of a few halogen dimers using scGW. Overall, our findings demonstrate the applicability of the fully self-consistent GW method for accurate ionization potential, photoelectron spectra, and total energies in finite systems with heavy elements with a reasonable computational scaling.

3.
J Chem Theory Comput ; 20(8): 3109-3120, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573104

RESUMEN

We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.

4.
J Chem Theory Comput ; 19(24): 9136-9150, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38054645

RESUMEN

Accurate modeling of the response of molecular systems to an external electromagnetic field is challenging on classical computers, especially in the regime of strong electronic correlation. In this article, we develop a quantum linear response (qLR) theory to calculate molecular response properties on near-term quantum computers. Inspired by the recently developed variants of the quantum counterpart of equation of motion (qEOM) theory, the qLR formalism employs "killer condition" satisfying excitation operator manifolds that offer a number of theoretical advantages along with reduced quantum resource requirements. We also used the qEOM framework in this work to calculate the state-specific response properties. Further, through noiseless quantum simulations, we show that response properties calculated using the qLR approach are more accurate than the ones obtained from the classical coupled-cluster-based linear response models due to the improved quality of the ground-state wave function obtained using the ADAPT-VQE algorithm.

5.
J Phys Chem A ; 127(39): 8179-8193, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37733948

RESUMEN

In a recent paper [JCTC, 2020, 16, 6098], we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact, local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space. By folding correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse, creating a more compact selected CI expansion. While we demonstrated that this approach can improve accuracy for a variety of systems, there is even greater potential for applications to excited states, particularly those which have some excited-state character. In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate excitation energies for several excited states of various polycyclic aromatic hydrocarbons with respect to the extrapolated result (i.e., near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 doubly excited (biexcitonic) states.

6.
Chem Sci ; 14(9): 2405-2418, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36873839

RESUMEN

Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H2, H4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.

7.
J Chem Theory Comput ; 18(8): 4856-4864, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878319

RESUMEN

Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of a truncated CI that ensures size extensivity. One of the major issues with the CEPA and its variants is that singularities arise in the amplitude equations when the system starts to be strongly correlated. In this work, we extend the traditional Slater determinant based coupled electron pair approaches like CEPA-0, averaged coupled-pair functional, and average quadratic coupled-cluster to a new formulation based on tensor product states (TPS). We show that a TPS basis can often be chosen such that it removes the singularities that commonly destroy the accuracy of CEPA based methods. A suitable TPS representation can be formed by partitioning the system into separate disjoint clusters and forming the final wave function as the tensor product of the many body states of these clusters. We demonstrate the application of these methods on simple bond breaking systems such as CH4 and F2 where determinant based CEPA methods fail. We further apply the TPS-CEPA approach to stillbene isomerization and few planar π-conjugated systems. Overall, the results show that the TPS-CEPA method can remove the singularities and provide improved numerical results compared to common electronic structure methods.

8.
J Phys Chem Lett ; 12(43): 10505-10514, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34677988

RESUMEN

Understanding the separation of the correlated triplet pair state 1(TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction (K) between the triplets which leads to the spin splitting of the biexciton state into 1(TT),3(TT) and 5(TT) states, and (ii) the triplet-triplet energy transfer integral (t) which enables the formation of the spatially separated (but still spin entangled) state 1(T···T). We develop a simple ab initio technique to compute both the biexciton exchange (K) and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.

9.
J Chem Phys ; 155(5): 054101, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364343

RESUMEN

The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice energies, and so on. In the past, applications of MBE to correlation energy have been unfeasible for large systems, but recent improvements to computing resources have sparked renewed interest in capturing the correlation energy using the generalized nth order Bethe-Goldstone equation. In this work, we extend this approach, originally proposed for a Slater determinant, to a tensor product state (TPS) based wavefunction. By partitioning the active space into smaller orbital clusters, our approach starts from a cluster mean field reference TPS configuration and includes the correlation contribution of the excited TPSs using the MBE. This method, named cluster MBE (cMBE), improves the convergence of MBE at lower orders compared to directly doing a block-based MBE from a RHF reference. We present numerical results for strongly correlated systems, such as the one- and two-dimensional Hubbard models and the chromium dimer. The performance of the cMBE method is also tested by partitioning the extended π space of several large π-conjugated systems, including a graphene nano-sheet with a very large active space of 114 electrons in 114 orbitals, which would require 1066 determinants for the exact FCI solution.

10.
J Chem Theory Comput ; 16(10): 6098-6113, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32846094

RESUMEN

Selected configuration interaction (SCI) methods are currently enjoying a resurgence due to several recent developments which improve either the overall computational efficiency or the compactness of the resulting SCI vector. These recent advances have made it possible to get full CI (FCI) quality results for much larger orbital active spaces compared to conventional approaches. However, due to the starting assumption that the FCI vector has only a small number of significant Slater determinants, SCI becomes intractable for systems with strong correlation. This paper introduces a method for developing SCI algorithms in a way which exploits local molecular structure to significantly reduce the number of SCI variables. The proposed method is defined by first grouping the orbitals into clusters over which we can define many-particle cluster states. We then directly perform the SCI algorithm in a basis of tensor products of cluster states instead of Slater determinants. While the approach is general for arbitrarily defined cluster states, we find significantly improved performance by defining cluster states through a Tucker decomposition of the global (and sparse) SCI vector. To demonstrate the potential of this method, called tensor product selected configuration interaction (TPSCI), we present numerical results for a diverse set of examples: (1) modified Hubbard model with different inter- and intracluster hopping terms, (2) less obviously clusterable cases of bond breaking in N2 and F2, and (3) ground state energies of large planar π-conjugated systems with active spaces of up to 42 electrons in 42 orbitals. These numerical results show that TPSCI can be used to significantly reduce the number of SCI variables in the variational space, thus paving a path for extending these deterministic and variational SCI approaches to a wider range of physical systems.

11.
J Phys Chem Lett ; 8(22): 5472-5478, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29061043

RESUMEN

Because of the potential for increasing solar cell efficiencies, significant effort has been spent understanding the mechanism of singlet fission. We provide a simple connectivity rule to predict whether the through-bond coupling will be stabilizing or destabilizing for the 1(TT) state in covalently linked singlet-fission chromophores. By drawing an analogy between the chemical system and a simple spin-lattice, one is able to determine the ordering of the multiexciton spin state via a generalized usage of Ovchinnikov's rule. This allows one to predict (without any computation) whether the 1(TT) multiexciton state will be bound or unbound with respect to the separated triplets in covalently linked singlet-fission dimers. To test our hypothesis, we have performed ab initio calculations on a systematic series of covalently linked singlet-fission dimers. Numerical examples are given, and the limitations of the proposed theory are explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA