Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 114: 106410, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33761341

RESUMEN

The present work aims to develop ultra-wide bandwidth air-coupled capacitive micromachined ultrasonic transducers (CMUTs) for binary gas mixture analysis. The detection principle is based on time-of-flight (ToF) measurements, in order to monitor gas ultrasound velocity variations. To perform such measurements, CMUTs were especially designed to work out of resonance mode, like a microphone. The chosen membrane size is 32 × 32 µm2 and gap height is 250 nm. The resonance frequency and collapse voltage were found at 8 MHz and 58 V respectively. As mentioned, the CMUTs were exploited in quasi-static operating mode, in a very low frequency band, from 1 MHz to 1.5 MHz frequencies. The transducer impulse response was characterised, and a -6 dB relative fractional frequency bandwidth (FBW) higher than 100% was measured, enabling to use CMUT for the targeted application. Additionally, a measuring cell has been designed to hold the fabricated CMUT emitter and receiver prototypes facing each other. The volume inside the cell was kept lower than 3 mL and the surface of emitter/receiver was 1.6 × 8 mm2. To validate the general principle of the proposed technique, two binary gas mixtures of CO2/N2 and H2/N2, with varying concentrations, have been tested. The results are very promising with a measured limit of detection (LOD) of 0.3% for CO2 in N2 and 0.15% for H2 in N2.

2.
Sci Rep ; 9(1): 2979, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814622

RESUMEN

Semiconducting nanostructures are one of the potential candidates to accomplish low-temperature and solution-based device assembly processes for the fabrication of transistors that offer practical solutions toward realizing low-cost flexible electronics. Meanwhile, it has been shown that by introducing a contact barrier, in a specific transistor configuration, stable device operation can be achieved at much reduced power consumption. In this work, we investigate both one-dimensional ZnO nanowires (NWs) and two-dimensional nanosheets (NSs) for high performance and stable nano-transistors on conventional Si/SiO2 substrates. We have fabricated two variant of transistors based on nanoscale single-crystalline oxide materials: field-effect transistors (FETs) and source-gated transistors (SGTs). Stability tests are performed on both devices with respect to gate bias stress at three different regimes of transistor operation, namely off-state, on-state and sub-threshold state. While in the off-state, FETs shows comparatively better stability than SGTs devices, in both sub-threshold and on-state regimes of transistors, SGTs clearly exhibits better robustness against bias stress variability. The present investigation experimentally demonstrates the potential advantages of SGTs over FETs as driver transistor for AMOLEDs display circuits which require very high stability in OLED driving current.

3.
Nanoscale Res Lett ; 13(1): 249, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30136036

RESUMEN

We report the influence of ammonium hydroxide (NH4OH), as growth additive, on zinc oxide nanomaterial through the optical response obtained by photoluminescence (PL). A low-temperature hydrothermal process is employed for the growth of ZnO nanowires (NWs) on seedless Au surface. A more than two order of magnitude change in ZnO NW density is demonstrated via careful addition of NH4OH in the growth solution. Further, we show by systematic experimental study and PL characterization data that the addition of NH4OH can degrade the optical response of ZnO NWs produced. The increase of growth solution basicity with the addition of NH4OH may slowly degrade the optical response of NWs by slowly etching its surfaces, increasing the point defects in ZnO NWs. The present study demonstrates the importance of growth nutrients to obtain quality controlled density tunable ZnO NWs on seedless conducting substrates.

4.
Sci Rep ; 7(1): 15187, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123216

RESUMEN

Controlling properties of one-dimensional (1D) semiconducting nanostructures is essential for the advancement of electronic devices. In this work, we present a low-temperature hydrothermal growth process enabling density control of aligned high aspect ratio ZnO nanowires (NWs) on seedless Au surface. A two order of magnitude change in ZnO NW density is demonstrated via careful control of the ammonium hydroxide concentration (NH4OH) in the solution. Based on the experimental observations, we further, hypothesized the growth mechanism leading to the density controlled growth of ZnO NWs. Moreover, the effect of NH4OH on the electrical properties of ZnO NWs, such as doping and field-effect mobility, is thoroughly investigated by fabricating single nanowire field-effect transistors. The electrical study shows the increase of free charge density while decrease of mobility in ZnO NWs with the increase of NH4OH concentration in the growth solution. These findings show that NH4OH can be used for simultaneous tuning of the NW density and electrical properties of the ZnO NWs grown by hydrothermal approach. The present work will guide the engineers and researchers to produce low-temperature density controlled aligned 1D ZnO NWs over wide range of substrates, including plastics, with tunable electrical properties.

5.
Sci Rep ; 6: 19232, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26757945

RESUMEN

Due to their fabrication simplicity, fully compatible with low-cost large-area device assembly strategies, source-gated transistors (SGTs) have received significant research attention in the area of high-performance electronics over large area low-cost substrates. While usually based on either amorphous or polycrystalline silicon (α-Si and poly-Si, respectively) thin-film technologies, the present work demonstrate the assembly of SGTs based on single-crystalline ZnO sheet (ZS) with asymmetric ohmic drain and Schottky source contacts. Electrical transport studies of the fabricated devices show excellent field-effect transport behaviour with abrupt drain current saturation (IDS(SAT)) at low drain voltages well below 2 V, even at very large gate voltages. The performance of a ZS based SGT is compared with a similar device with ohmic source contacts. The ZS SGT is found to exhibit much higher intrinsic gain, comparable on/off ratio and low off currents in the sub-picoamp range. This approach of device assembly may form the technological basis for highly efficient low-power analog and digital electronics using ZnO and/or other semiconducting nanomaterial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA