Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Cell Physiol ; 239(2): e31168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149794

RESUMEN

Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFß1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFß1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Artropatías , Animales , Humanos , Ratones , Colágeno/metabolismo , Artropatías/tratamiento farmacológico , Artropatías/metabolismo , Articulación de la Rodilla/metabolismo , Piperidinas/farmacología , Femenino , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/farmacología
2.
Bone Joint Res ; 12(1): 58-71, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647696

RESUMEN

AIMS: As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). METHODS: Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. RESULTS: Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. CONCLUSION: This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies.Cite this article: Bone Joint Res 2023;12(1):58-71.

3.
J Cell Biochem ; 124(2): 320-334, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36648754

RESUMEN

Arthrofibrosis, which is characterized by excessive scar tissue and limited motion, can complicate the daily functioning of patients after total knee arthroplasty (TKA). Molecular hallmarks of arthrofibrosis include pathologic accumulation of myofibroblasts and disproportionate collagen deposition. Epigenetic mechanisms, including posttranslation modification of histones, control gene expression and may regulate fibrotic events. This study assessed the role of the bromodomain and extra-terminal (BET) proteins on myofibroblast differentiation. This group of epigenetic regulators recognize acetylated lysines and are targeted by a class of drugs known as BET inhibitors. RNA-seq analysis revealed robust mRNA expression of three BET members (BRD2, BRD3, and BRD4) while the fourth member (BRDT) is not expressed in primary TKA knee outgrowth fibroblasts. RT-qPCR and western blot analyses revealed that BET inhibition with the small molecule JQ1 impairs TGFß1-induced expression of ACTA2, a key myofibroblast marker, in primary outgrowth knee fibroblasts. Similarly, JQ1 administration also reduced COL3A1 mRNA levels and collagen deposition as monitored by picrosirius red staining. Interestingly, the inhibitory effects of JQ1 on ACTA2 mRNA and protein expression, as well as COL3A1 expression and collagen deposition, were paralleled by siRNA-mediated depletion of BRD4. Together, these data reveal that BRD4-mediated epigenetic events support TGFß1-mediated myofibroblast differentiation and collagen deposition as seen in arthrofibrosis. To our knowledge, these are the first studies that assess epigenetic regulators and their downstream events in the context of arthrofibrosis. Future studies may reveal clinical utility for drugs that target epigenetic pathways, specifically BET proteins, in the prevention and treatment of arthrofibrosis.


Asunto(s)
Rodilla , Miofibroblastos , Factores de Transcripción , Humanos , Azepinas/farmacología , Proteínas de Ciclo Celular/genética , Colágeno/metabolismo , Epigénesis Genética , Fibroblastos/metabolismo , Rodilla/patología , Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
4.
Sci Rep ; 12(1): 22627, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587032

RESUMEN

Arthrofibrosis following total knee arthroplasty (TKA) is a debilitating condition typically diagnosed based on clinical findings. To gain insight into the histopathologic immune cell microenvironment of arthrofibrosis, we assessed the extent of tissue fibrosis and quantified immune cell populations in specific tissue regions of the posterior capsule. We investigated specimens from three prospectively-collected, matched cohorts, grouped as patients receiving a primary TKA for osteoarthritis, revision TKA for arthrofibrosis, and revision TKA for non-arthrofibrotic, non-infectious reasons. Specimens were evaluated using hematoxylin and eosin staining, picrosirius red staining, immunofluorescence, and immunohistochemistry with Aperio®-based digital image analysis. Increased collagen deposition and increased number of α-SMA/ACTA2 expressing myofibroblasts were present in the arthrofibrosis group compared to the two non-arthrofibrotic groups. CD163 + macrophages were the most abundant immune cell type in any capsular sample with specific enrichment in the synovial tissue. CD163 + macrophages were significantly decreased in the fibrotic tissue region of arthrofibrosis patients compared to the patients with primary TKA, and significantly increased in adipose tissue region of arthrofibrotic specimens compared to non-arthrofibrotic specimens. Synovial CD117 + mast cells were significantly decreased in arthrofibrotic adipose tissue. Together, these findings inform diagnostic and targeted therapeutic strategies by providing insight into the underlying pathogenetic mechanisms of arthrofibrosis.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Artropatías , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Articulación de la Rodilla/patología , Artropatías/patología , Fibrosis , Membrana Sinovial/patología
5.
J Cell Biochem ; 123(5): 878-892, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35224764

RESUMEN

Arthrofibrosis is characterized by excessive extracellular matrix (ECM) deposition that results in restricted joint motion after total knee arthroplasties (TKAs). Currently, treatment options are limited. Therefore, an in vitro model of knee-related myofibroblastogenesis is valuable to facilitate investigation of the arthrofibrotic process, diagnostic and therapeutic options. In this study, we obtained intraoperative posterior capsule (PC), quadriceps tendon (QT), and suprapatellar pouch (SP) tissues from the knees of four patients undergoing primary TKAs for osteoarthritis. From these tissues, we isolated primary cells by the outgrowth method and subsequently characterized these cells in the absence and presence of the pro-myofibroblastic cytokine, transforming growth factor beta 1 (TGFß1). Light microscopy of knee outgrowth cells revealed spindle-shaped cells, and immunofluorescence (IF) analysis demonstrated staining for the fibroblast-specific markers TE-7 and vimentin (VIM). These knee outgrowth fibroblasts differentiated readily into myofibroblasts as reflected by enhanced α-smooth muscle actin (ACTA2) mRNA and protein expression and increased mRNA expression of collagen type 1 (COL1A1) and type 3 (COL3A1) with collagenous matrix deposition in the presence of TGFß1. Outgrowth knee fibroblasts were more sensitive to TGFß1-mediated myofibroblastogenesis than adipose-derived mesenchymal stromal/stem cells (MSCs). While outgrowth knee fibroblasts isolated from three anatomical regions in four patients exhibited similar gene expression, these cells are distinct from other fibroblastic cell types (i.e., Dupuytren's fibroblasts) as revealed by RNA-sequencing. In conclusion, our study provides an in vitro myofibroblastic model of outgrowth knee fibroblasts derived from patients undergoing primary TKA that can be utilized to study myofibroblastogenesis and assess therapeutic strategies for arthrofibrosis.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Actinas/genética , Actinas/metabolismo , Fibroblastos/metabolismo , Humanos , Articulación de la Rodilla/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
6.
J Orthop Res ; 40(2): 323-337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33871082

RESUMEN

Experimental analyses of posttraumatic knee arthrofibrosis utilize a rabbit model as a gold standard. However, a rodent model of arthrofibrosis offers many advantages including reduced cost and comparison with other models of organ fibrosis. This study aimed to characterize the biomechanical, histological, and molecular features of a novel posttraumatic model of arthrofibrosis in rats. Forty eight rats were divided into two equal groups. An immobilization procedure was performed on the right hind limbs of experimental rats. One group was immobilized for 4 weeks and the other for 8 weeks. Both groups were remobilized for 4 weeks. Limbs were studied biomechanically via assessment of torque versus degree of extension, histologically via whole knee specimen, and molecularly via gene expression of posterior capsular tissues. Significant differences were observed between experimental and control limbs at 4 N-cm of torque in the 4-week (knee extension: 115° ± 8° vs. 169° ± 17°, respectively; p = 0.007) and 8-week immobilization groups (knee extension: 99° ± 12° vs. 174° ± 9°, respectively; p = 0.008). Histologically, in each group experimental limbs demonstrated increased posterior capsular thickness and total area of tissue when compared to control limbs (p < 0.05). Gene expression values evaluated in each group were comparable. This study presents a novel rat model of arthrofibrosis with severe and persistent knee contractures demonstrated biomechanically and histologically. Statement of clinical significance: Arthrofibrosis is a common complication following contemporary total knee arthroplasties. The proposed model is reproducible, cost-effective, and can be employed for translational investigations studying the pathogenesis of arthrofibrosis and efficacy of neoadjuvant pharmacologic agents.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Contractura , Artropatías , Animales , Artroplastia de Reemplazo de Rodilla/efectos adversos , Contractura/etiología , Contractura/patología , Fibrosis , Artropatías/patología , Articulación de la Rodilla/patología , Conejos , Rango del Movimiento Articular , Ratas
7.
Methods Mol Biol ; 2257: 293-310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34432285

RESUMEN

Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.


Asunto(s)
Neoplasias de la Mama , Biología , Neoplasias de la Mama/genética , Femenino , Proteínas de Choque Térmico HSP27 , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas de Choque Térmico , Humanos , MicroARNs/genética
8.
Nutr Res Pract ; 15(Suppl 1): S53-S69, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34909133

RESUMEN

BACKGROUND/OBJECTIVES: To determine the weight change trend among the adult Turkish population after 1 yr of the coronavirus disease 2019 (COVID-19) pandemic and factors associated with weight change. MATERIALS/METHODS: This cross-sectional study was conducted between 26 February and 6 March 2021 using an online questionnaire that included questions for sociodemographic variables, eating habits, stress level, and the Three-Factor Eating Questionnaire-R18. Those who weighed themselves 1-2 weeks before the pandemic was declared in Turkey and remembered their weight were invited to participate in the study. Trends in weight and body mass index (BMI) change were calculated. The variables associated with a 1% change in BMI were assessed using hierarchical regression analysis. RESULTS: The study was conducted with 1,630 adults (70.25% female) with a mean age of 32.09 (11.62) yrs. The trend of weight change was found to increase by an average of 1.15 ± 6.10 kg (female +0.72 ± 5.51, male +2.16 ± 7.22 kg) for the first year of the COVID-19 pandemic. The rate of participants with a normal BMI (18.50-24.99 kg/m2) decreased to 51.91% from 55.75%. Consuming an "Increased amount of food compared to before the pandemic" was found to be the independent variable that had the strongest association with a 1% increase in BMI (ß = 0.23 P < 0.001). The average change in the BMI was higher in older individuals than in those who were younger. A high stress level was associated with a decrease in BMI (ß = -0.04 P = 0.048). CONCLUSIONS: In this study, the factors associated with weight change after 1 yr of the pandemic in the Turkish population was reported for the first time. A high stress level and increased weight gain trend still occur in Turkey after 1 yr of the pandemic.

9.
Molecules ; 26(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279371

RESUMEN

The important roles of food packaging are food protection and preservation during processing, transportation, and storage. Food can be altered biologically, chemically, and physically if the packaging is unsuitable or mechanically damaged. Furthermore, packaging is an important marketing and communication tool to consumers. Due to the worldwide problem of environmental pollution by microplastics and the large amounts of unused food wastes and by-products from the food industry, it is important to find more environmentally friendly alternatives. Edible and functional food packaging may be a suitable alternative to reduce food waste and avoid the use of non-degradable plastics. In the present review, the production and assessment of edible food packaging from food waste as well as fruit and vegetable by-products and their applications are demonstrated. Innovative food packaging made of biopolymers and biocomposites, as well as active packaging, intelligent packaging, edible films, and coatings are covered.


Asunto(s)
Películas Comestibles , Frutas/química , Verduras/química , Residuos
10.
Mol Nutr Food Res ; 65(16): e2100227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048642

RESUMEN

SCOPE: Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS: To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION: This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dieta , Nutrigenómica , Polifenoles/administración & dosificación , Animales , Biología Computacional , Regulación de la Expresión Génica , Ratones , Ratas
11.
Meta Gene ; 282021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33816122

RESUMEN

Arthrofibrosis is characterized by excessive extracellular matrix deposition in patients with total knee arthroplasties (TKAs) and causes undesirable joint stiffness. The pathogenesis of arthrofibrosis remains elusive and currently there are no diagnostic biomarkers for the pathological formation of this connective tissue. Fibrotic soft tissues are known to have elevated levels of plasminogen activator inhibitor-1 (PAI-1) (encoded by SERPINE1), a secreted serine protease inhibitor that moderates extracellular matrix remodeling and tissue homeostasis. The 4G/5G insertion/deletion (rs1799889) is a well-known SERPINE1 polymorphism that directly modulates PAI-1 levels. Homozygous 4G/4G allele carriers typically have higher PAI-1 levels and may predispose patients to soft tissue fibrosis (e.g., liver, lung, and kidney). Here, we examined the genetic contribution of the SERPINE1 rs1799889 polymorphism to musculoskeletal fibrosis in arthrofibrotic (n = 100) and non-arthrofibrotic (n = 100) patients using Sanger Sequencing. Statistical analyses revealed that the allele frequencies of the SERPINE1 rs1799889 polymorphism are similar in arthrofibrotic and non-arthrofibrotic patient cohorts. Because the fibrosis related SERPINE1 rs1799889 polymorphism is independent of arthrofibrosis susceptibility in TKA patients, the possibility arises that fibrosis of joint connective tissues may involve unique genetic determinants distinct from those linked to classical soft tissue fibrosis.

12.
J Clin Med ; 9(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213041

RESUMEN

(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFß1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFß1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFß-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.

13.
Gene Rep ; 192020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32377595

RESUMEN

Protein detection techniques such as western blotting and ELISA rely on housekeeping proteins as standards for sample normalization. However, clinical or animal tissue specimens are heterogeneous due to presence of contaminating cell types and tissues (e.g., blood vessels and muscle) or cellular decay during tissue storage and isolation which may compromise protein integrity. This biological heterogeneity may invalidate the assumption that housekeeping proteins are invariable across various specimens. This study provides data that advocate for protein standardization based on total protein staining in rabbit posterior capsular tissues. We compared the classical normalization markers glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ß-tubulin (TUBB) with other proteins that have low variation in expression (i.e., FTL, FTH1, EEF1A1, TPT1) based on RNAseq data for human posterior capsular tissues. Histological examination revealed a high degree of qualitative variation in microscopic images of capsular tissue specimens. This variation is reflected by significant differences in specific protein signals for all housekeeping proteins as detected by western blot analysis. However, total protein staining, which combines the intensity of multiple gel electrophoretic bands, normalizes natural biological variation observed for individual housekeeping proteins and permits assessment of protein integrity. Therefore, we propose that normalization based on total protein staining increases accuracy of protein quantification of heterogeneous tissue specimen samples.

14.
Genomics ; 112(4): 2703-2712, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32145378

RESUMEN

Arthrofibrosis is an abnormal histopathologic response, is debilitating for patients, and poses a substantial unsolved clinical challenge. This study characterizes molecular biomarkers and regulatory pathways associated with arthrofibrosis by comparing fibrotic and non-fibrotic human knee tissue. The fibrotic group encompasses 4 patients undergoing a revision total knee arthroplasty (TKA) for arthrofibrosis (RTKA-A) while the non-fibrotic group includes 4 patients undergoing primary TKA for osteoarthritis (PTKA) and 4 patients undergoing revision TKA for non-arthrofibrotic and non-infectious etiologies (RTKA-NA). RNA-sequencing of posterior capsule specimens revealed differences in gene expression between each patient group by hierarchical clustering, principal component analysis, and correlation analyses. Multiple differentially expressed genes (DEGs) were defined in RTKA-A versus PTKA patients (i.e., 2059 up-regulated and 1795 down-regulated genes) and RTKA-A versus RTKA-NA patients (i.e., 3255 up-regulated and 3683 down-regulated genes). Our findings define molecular and pathological markers of arthrofibrosis, as well as novel potential targets for risk profiling, early diagnosis and pharmacological treatment of patients.


Asunto(s)
Regulación de la Expresión Génica , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Artroplastia de Reemplazo de Rodilla , Fibrosis , Ontología de Genes , Humanos , Articulación de la Rodilla/cirugía , RNA-Seq , Reoperación , Transcriptoma
15.
Eur J Nutr ; 58(Suppl 2): 49-64, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31492976

RESUMEN

PURPOSE: The quality of the study design and data reporting in human trials dealing with the inter-individual variability in response to the consumption of plant bioactives is, in general, low. There is a lack of recommendations supporting the scientific community on this topic. This study aimed at developing a quality index to assist the assessment of the reporting quality of intervention trials addressing the inter-individual variability in response to plant bioactive consumption. Recommendations for better designing and reporting studies were discussed. METHODS: The selection of the parameters used for the development of the quality index was carried out in agreement with the scientific community through a survey. Parameters were defined, grouped into categories, and scored for different quality levels. The applicability of the scoring system was tested in terms of consistency and effort, and its validity was assessed by comparison with a simultaneous evaluation by experts' criteria. RESULTS: The "POSITIVe quality index" included 11 reporting criteria grouped into four categories (Statistics, Reporting, Data presentation, and Individual data availability). It was supported by detailed definitions and guidance for their scoring. The quality index score was tested, and the index demonstrated to be valid, reliable, and responsive. CONCLUSIONS: The evaluation of the reporting quality of studies addressing inter-individual variability in response to plant bioactives highlighted the aspects requiring major improvements. Specific tools and recommendations favoring a complete and transparent reporting on inter-individual variability have been provided to support the scientific community on this field.


Asunto(s)
Variación Biológica Poblacional/fisiología , Exactitud de los Datos , Dieta Vegetariana/métodos , Fitoquímicos/farmacología , Proyectos de Investigación , Dieta Vegetariana/tendencias , Humanos , Fitoquímicos/administración & dosificación , Plantas Comestibles , Reproducibilidad de los Resultados
16.
J Agric Food Chem ; 66(41): 10686-10692, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30208704

RESUMEN

Plant bioactive compounds consumed as part of our diet are able to influence human health. They include secondary metabolites like (poly)phenols, carotenoids, glucosinolates, alkaloids, and terpenes. Although much knowledge has been gained, there is still need for studies unravelling the effects of plant bioactives on cardiometabolic health at the individual level, using cutting-edge high-resolution and data-rich holistic approaches. The aim of this Perspective is to review the prospects of microbiomics, nutrigenomics and nutriepigenomics, and metabolomics to assess the response to plant bioactive consumption while considering interindividual variability. Insights for future research in the field toward personalized nutrition are discussed.


Asunto(s)
Microbioma Gastrointestinal , Extractos Vegetales/química , Plantas/química , Plantas/metabolismo , Animales , Genómica , Humanos , Metabolómica , Valor Nutritivo , Extractos Vegetales/metabolismo , Plantas/genética
17.
Curr Pharm Des ; 23(35): 5349-5357, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28911307

RESUMEN

Targeting drugs or pharmaceutical compounds to tumor site increases cancer treatment efficiency and therapeutic outcome. Nanoparticles are unique delivery systems for site-targeting within an organism. Many novel technologies have been established in drug research and development area. Nanotechnology now offers nanometer size polymeric nanoparticles and these particles direct drugs to their targets, protect drugs against degradation, and release the drug in a controlled manner. Modification of nanoparticle surface by molecules leads to prolonged retention and accumulation in the target area of the organism. Current efforts of designing polymeric nanoparticles include drug activation in the target area, controlled drug release at the site upon stimulation, and increased drug loading capacity of drug polymer conjugates. Recent progress in molecular mechanism elucidation of cancer cell and rising research in nanoparticle designs may provide efficient cancer treatment modality and innovative nanoparticle designs in the near future. Recent years have seen many developments in the field of innovative peptide based drug nanoparticles. Although none of them approved to be used in clinics yet, peptides are promising structures due to their simple and nonantigenic nature. Biodegradable materials are also preferred materials in drug delivery. Polysaccharide-based micelle systems improve hydrophobic drug and protein delivery. Ease of saccharide structure modification improves pharmacokinetic and pharmacodynamic properties of drug molecules as well as their delivery to a specific site in a controlled manner and sustained rate. Small molecules, especially drugs, conjugated to nanoparticles and several nanoparticles of this type are in the clinical trials and at the market. This review provides recent developments of polymeric nanoparticles conjugated with peptides, saccharides, and small molecules in cancer theraphy.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Fragmentos de Péptidos/administración & dosificación , Polímeros/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Polímeros/química , Polímeros/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
18.
Food Funct ; 6(4): 1090-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25629236

RESUMEN

The essential function of vitamin E in vivo is not fully understood. Several studies addressed changes in the pattern of gene expression induced by vitamin E, but often did not investigate if these changes altered biochemical pathways and are eventually translated into biological function. We therefore used (1)H-NMR metabolomics to investigate the biochemical effects in the liver of rats caused by long-term feeding with diets deficient (dVE; α-tocopherol (αT), <1; γ-tocopherol (γT), <1; all values in mg kg(-1) diet), marginal (mVE; αT, 6; γT, 11), sufficient (sVE; αT, 12; γT, 24), or fortified with vitamin E (fVE; αT, 140; γT, 24). The concentrations of four polar hepatic metabolites were affected by the vitamin E content of the diet; glucose was lower and creatine, phosphocholine, and betaine were higher in deficient compared with rats receiving vitamin E. To achieve further biochemical insight, we investigated transcriptional changes in genes involved in the regulation of metabolic pathways related to these metabolites. Transcription of PGC1α, PPARα, and PPARγ, transcription factors controlling energy metabolism, was lower and that of the fatty acid translocase CD36 higher in animals fed vitamin E-deficient compared to those fed vitamin E-replete diets. Our data thus indicate that consumption of a vitamin E-deficient diet may alter hepatic energy metabolism in rats.


Asunto(s)
Metabolismo Energético , Hígado/metabolismo , Metabolómica , Deficiencia de Vitamina E/sangre , Vitamina E/sangre , Animales , Glucemia/metabolismo , Colesterol/sangre , Dieta/veterinaria , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Endogámicas F344 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/sangre , Vitamina E/administración & dosificación
19.
J Food Sci ; 79(4): C484-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24621264

RESUMEN

Malondialdehyde (MDA) is a biomarker of lipid peroxidation and is present in foods and biological samples such as plasma. A high-performance liquid chromatography (HPLC) method was applied to determine MDA in fish liver samples after derivatization with 2,4-dinitrophenylhydrazine (DNPH) using a ODS2 column (10 cm × 4.6 mm, 3 µm) and a photodiode array detector. The mobile phase consisted of 0.2% acetic acid (v/v) in distilled water and acetonitrile (42:58, v/v). The present method was validated in terms of linearity, lower limit of quantification, lower limit of detection, precision, accuracy, recovery, and stability of MDA according to U.S. Food and Drug Administration (FDA) guidelines. The limit of quantification of MDA was 0.39 µmol/L, which is comparable to other methods. The recovery of the spiked MDA liver samples was in the range of 92.4% to 104.2%. This newly modified HPLC method is specific, sensitive, and accurate and allows the analysis of MDA within 4 min in fish liver but also in other tissues and plasma.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Peces , Peroxidación de Lípido , Hígado/química , Malondialdehído/análisis , Animales , Humanos , Fenilhidrazinas , Estados Unidos , United States Food and Drug Administration
20.
J Agric Food Chem ; 62(2): 402-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24328299

RESUMEN

A rapid, sensitive, and direct method (without derivatization) was developed for the detection of reduced glutathione (GSH) in cultured hepatocytes (HepG2 cells) using high-performance liquid chromatography with electrochemical detection (HPLC-ECD). The method was validated according to the guidelines of the U.S. Food and Drug Administration in terms of linearity, lower limit of quantitation (LOQ), lower limit of detection (LOD), precision, accuracy, recovery, and stabilities of GSH standards and quality control samples. The total analysis time was 5 min, and the retention time of GSH was 1.78 min. Separation was carried out isocratically using 50 mM sodium phosphate (pH 3.0) as a mobile phase with a fused-core column. The detector response was linear between 0.01 and 80 µmol/L, and the regression coefficient (R(2)) was >0.99. The LOD for GSH was 15 fmol, and the intra- and interday recoveries ranged between 100.7 and 104.6%. This method also enabled the rapid detection (in 4 min) of other compounds involved in GSH metabolism such as uric acid, ascorbic acid, and glutathione disulfite. The optimized and validated HPLC-ECD method was successfully applied for the determination of GSH levels in HepG2 cells treated with buthionine sulfoximine (BSO), an inhibitor, and α-lipoic acid (α-LA), an inducer of GSH synthesis. As expected, the amount of GSH concentration-dependently decreased with BSO and increased with α-LA treatments in HepG2 cells. This method could also be useful for the quantitation of GSH, uric acid, ascorbic acid, and glutathione disulfide in other biological matrices such as tissue homogenates and blood.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glutatión/análisis , Butionina Sulfoximina/farmacología , Estabilidad de Medicamentos , Técnicas Electroquímicas , Glutatión/metabolismo , Células Hep G2 , Humanos , Límite de Detección , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ácido Tióctico/farmacología , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA