Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chem Sci ; 10(34): 8025-8034, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31853358

RESUMEN

Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5'-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (ß-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing ß-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling.

2.
Anal Chem ; 90(11): 6385-6389, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29722964

RESUMEN

With the advent of new cross-linking chemistries, analytical technologies, and search algorithms, cross-linking has become an increasingly popular strategy for evaluating tertiary and quaternary structures of proteins. Collisional activated dissociation remains the primary MS/MS method for identifications of peptide cross-links in high throughput workflows. Ultraviolet photodissociation (UVPD) at 193 nm has emerged as an alternative ion activation method well-suited for characterization of peptides and has been found in some cases to identify different peptides or provide distinctive sequence information than obtained by collisional activation methods. Complementary high energy collision dissociation (HCD) and UVPD were used in the present study to characterize protein cross-linking for bovine serum albumin, hemoglobin, and E. coli ribosome. Cross-links identified by HCD and UVPD using bis(sulfosuccinimidyl)suberate (BS3), a homobifunctional amine-to-amine cross-linker, and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), a heterofunctional amine-to-carboxylic acid cross-linker, were evaluated in the present study. While more unique BS3 cross-links were identified by HCD, UVPD, and HCD provided a complementary panel of DMTMM cross-links which extended the degree of structural insight obtained for the proteins.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Péptidos/química , Proteínas/química , Animales , Bovinos , Escherichia coli/química , Hemoglobinas/química , Morfolinas/química , Fotólisis , Proteómica/métodos , Ribosomas/química , Albúmina Sérica Bovina/química , Succinimidas/química , Espectrometría de Masas en Tándem/métodos , Rayos Ultravioleta
3.
J Am Soc Mass Spectrom ; 29(6): 1323-1326, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626295

RESUMEN

UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.

4.
Anal Chem ; 90(1): 839-846, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29188992

RESUMEN

The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.


Asunto(s)
Adenilato Quinasa/química , Animales , Catálisis , Pollos , Ligandos , Magnesio/química , Espectrometría de Masas/métodos , Conformación Proteica en Hélice alfa
5.
Genes Dev ; 31(3): 260-274, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242625

RESUMEN

Chromatin connects DNA damage response factors to sites of damaged DNA to promote the signaling and repair of DNA lesions. The histone H2A variants H2AX, H2AZ, and macroH2A represent key chromatin constituents that facilitate DNA repair. Through proteomic screening of these variants, we identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination (HR). ZMYM3 is recruited to DNA double-strand breaks through bivalent interactions with both histone and DNA components of the nucleosome. We show that ZMYM3 links the HR factor BRCA1 to damaged chromatin through specific interactions with components of the BRCA1-A subcomplex, including ABRA1 and RAP80. By regulating ABRA1 recruitment to damaged chromatin, ZMYM3 facilitates the fine-tuning of BRCA1 interactions with DNA damage sites and chromatin. Consistent with a role in regulating BRCA1 function, ZMYM3 deficiency results in impaired HR repair and genome instability. Thus, our work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias Óseas/metabolismo , Cromatina/metabolismo , Reparación del ADN , Proteínas Nucleares/metabolismo , Osteosarcoma/metabolismo , Secuencia de Aminoácidos , Proteína BRCA1/genética , Neoplasias Óseas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromatina/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Inestabilidad Genómica , Células HEK293 , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga , Humanos , Proteínas Nucleares/genética , Osteosarcoma/genética , Homología de Secuencia de Aminoácido , Células Tumorales Cultivadas
6.
J Am Chem Soc ; 138(40): 13187-13196, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27665622

RESUMEN

Single-residue mutations at Gly12 (G12X) in the GTP-ase protein K-Ras can lead to activation of different downstream signaling pathways, depending on the identity of the mutation, through a poorly defined mechanism. Herein, native mass spectrometry combined with top-down ultraviolet photodissociation (UVPD) was employed to investigate the structural changes occurring from G12X mutations of K-Ras. Complexes between K-Ras or the G12X mutants and guanosine 5'-diphosphate (GDP) or GDPnP (a stable GTP analogue) were transferred to the gas phase by nano-electrospray ionization and characterized using UVPD. Variations in the efficiencies of backbone cleavages were observed upon substitution of GDPnP for GDP as well as for the G12X mutants relative to wild-type K-Ras. An increase in the fragmentation efficiency in the segment containing the first 50 residues was observed for the K-Ras/GDPnP complexes relative to the K-Ras/GDP complexes, whereas a decrease in fragmentation efficiency occurred in the segment containing the last 100 residues. Within these general regions, the specific residues at which changes in fragmentation efficiency occurred correspond to the phosphate and guanine binding regions, respectively, and are indicative of a change in the binding motif upon replacement of the ligand (GDP versus GDPnP). Notably, unique changes in UVPD were observed for each G12X mutant with the cysteine and serine mutations exhibiting similar UVPD changes whereas the valine mutation was significantly different. These findings suggest a mechanism that links the identity of the G12X substitution to different downstream effects through long-range conformational or dynamic effects as detected by variations in UVPD fragmentation.

8.
J Am Chem Soc ; 137(28): 9128-35, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26125523

RESUMEN

The stepwise reduction of dihydrofolate to tetrahydrofolate entails significant conformational changes of dihydrofolate reductase (DHFR). Binary and ternary complexes of DHFR containing cofactor NADPH, inhibitor methotrexate (MTX), or both NADPH and MTX were characterized by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. UVPD yielded over 80% sequence coverage of DHFR and resulted in production of fragment ions that revealed the interactions between DHFR and each ligand. UVPD of the binary DHFR·NADPH and DHFR·MTX complexes led to an unprecedented number of fragment ions containing either an N- or C-terminal protein fragment still bound to the ligand via retention of noncovalent interactions. In addition, holo-fragments retaining both ligands were observed upon UVPD of the ternary DHFR·NADPH·MTX complex. The combination of extensive holo and apo fragment ions allowed the locations of the NADPH and MTX ligands to be mapped, with NADPH associated with the adenosine binding domain of DHFR and MTX interacting with the loop domain. These findings are consistent with previous crystallographic evidence. Comparison of the backbone cleavage propensities for apo DHFR and its holo counterparts revealed significant variations in UVPD fragmentation in the regions expected to experience conformational changes upon binding NADPH, MTX, or both ligands. In particular, the subdomain rotation and loop movements, which are believed to occur upon formation of the transition state of the ternary complex, are reflected in the UVPD mass spectra. The UVPD spectra indicate enhanced backbone cleavages in regions that become more flexible or show suppressed backbone cleavages for those regions either shielded by the ligand or involved in new intramolecular interactions. This study corroborates the versatility of 193 nm UVPD mass spectrometry as a sensitive technique to track enzymatic cycles that involve conformational rearrangements.


Asunto(s)
Escherichia coli/enzimología , Espectrometría de Masas/métodos , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Escherichia coli/química , Escherichia coli/metabolismo , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Ligandos , Metotrexato/química , Metotrexato/farmacología , Modelos Moleculares , NADP/química , NADP/metabolismo , Procesos Fotoquímicos , Tetrahidrofolato Deshidrogenasa/metabolismo , Rayos Ultravioleta
9.
Chem Sci ; 6(2): 1324-1333, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29560219

RESUMEN

Ultraviolet photodissociation (UVPD) mass spectrometry is employed to investigate the structure of holo-myoglobin as well as its apo form transferred to the gas phase by native electrospray. UVPD provided insight into the stability of native structural elements of holo-myoglobin. The fragmentation yields from UVPD showed the greatest overall correlation with B-factors generated from the crystal structure of apo-myoglobin, particularly for the more disordered loop regions. Solvent accessibility measurements also showed some correlation with the UVPD fragmentation of holo-myoglobin. Comparison of UVPD of holo- and apo-myoglobin revealed similarities in fragmentation yields, particularly for the lower charge states (8 and 9+). Both holo- and apo-myoglobin exhibited low fragmentation yields for the AGH helical core, whereas regions known to interact with the heme show suppressed fragmentation for holo-myoglobin. The fragment yields from HCD showed the lowest correlation with B-factor values and rather reflected preferential charge-directed backbone cleavages.

10.
Anal Chem ; 86(4): 2185-92, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24447299

RESUMEN

Intact protein characterization using mass spectrometry thus far has been achieved at the cost of throughput. Presented here is the application of 193 nm ultraviolet photodissociation (UVPD) for top down identification and characterization of proteins in complex mixtures in an online fashion. Liquid chromatographic separation at the intact protein level coupled with fast UVPD and high-resolution detection resulted in confident identification of 46 unique sequences compared to 44 using HCD from prepared Escherichia coli ribosomes. Importantly, nearly all proteins identified in both the UVPD and optimized HCD analyses demonstrated a substantial increase in confidence in identification (as defined by an average decrease in E value of ∼40 orders of magnitude) due to the higher number of matched fragment ions. Also shown is the potential for high-throughput characterization of intact proteins via liquid chromatography (LC)-UVPD-MS of molecular weight-based fractions of a Saccharomyces cerevisiae lysate. In total, protein products from 215 genes were identified and found in 292 distinct proteoforms, 168 of which contained some type of post-translational modification.


Asunto(s)
Espectroscopía de Fotoelectrones/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Cromatografía Liquida/métodos , Caballos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Factores de Tiempo
11.
Electrophoresis ; 31(9): 1583-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20358539

RESUMEN

The peak parking method was used to determine the obstruction factor of lauryl acrylate porous polymer monoliths. Polymers were prepared in situ in fused-silica capillaries using thermally initiated polymerization. These columns have been used for CEC of neutral analytes. Thiourea, which is unretained, was used as the test analyte for the obstruction factor measurement. The obstruction factor was determined to be 0.72 with a SD of (+/-0.01), which is consistent with the concept that organic porous polymer monoliths are more permeable than traditional LC stationary phases.


Asunto(s)
Acrilatos/química , Electrocromatografía Capilar/métodos , Difusión , Modelos Lineales , Modelos Químicos , Polímeros/química , Tiourea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA