RESUMEN
Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.
RESUMEN
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
RESUMEN
KEY MESSAGE: A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.
Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Fitomejoramiento , Fenotipo , GenotipoRESUMEN
Plastic pollution has become a global and persistent challenge, posing threats to ecosystems and organisms. In recent years, there has been a rapid increase in scientific research focused on understanding microplastics in the soilâplant system. This surge is primarily driven by the direct impact of microplastics on agricultural productivity and their association with human activities. In this study, we conducted a comprehensive bibliometric analysis to provide an overview of the current research on microplastics in soilâplant systems. We systematically analysed 192 articles and observed a significant rise in research interests since 2017. Notably, China has emerged as a leading contributor in terms of published papers, closely followed by Germany and the Netherlands. Through co-authorship network analysis, we identified 634 different institutions that participated in publishing papers in this field, with the Chinese Academy of Sciences having the most collaborations. In the co-occurrence keyword network, we identified four clusters focusing on the diversity of microplastics within the agroecosystem, transportation, and quantification of microplastics in soil, analysis of plastic contamination type and impact, and investigation of microplastic phytotoxicity. Furthermore, we identified ten research priorities, categorized into the effects of microplastics in "soil" and "plant". The research hotspots were found to be the effect of microplastics on soil physicochemical properties and the synergistic phytotoxicity of microplastics with other pollutants. Overall, this bibliometric analysis holds significant value, serving as an important reference point and offering valuable suggestions for future researchers in this rapidly advancing field.
Asunto(s)
Microplásticos , Suelo , Humanos , Plásticos/toxicidad , Plásticos/análisis , Ecosistema , Monitoreo del Ambiente , BibliometríaRESUMEN
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismoRESUMEN
Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.
Asunto(s)
6-Fitasa , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismoRESUMEN
KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.
Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Alelos , Barajamiento de ADN , Grano ComestibleRESUMEN
KEY MESSAGE: A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.
Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico/métodos , Triticum/genética , Fitomejoramiento , FenotipoRESUMEN
Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.
Asunto(s)
Hordeum , Hordeum/genética , Plantones/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Mapeo Cromosómico , FenotipoRESUMEN
How crop domestication mediates root functional traits and trait plasticity in response to neighboring plants is unclear, but it is important for selecting potential species to be grown together to facilitate P uptake. We grew two barley accessions representing a two-stage domestication process as a sole crop or mixed with faba bean under low and high P inputs. We analyzed six root functional traits associated with P acquisition and plant P uptake in five cropping treatments in two pot experiments. The spatial and temporal patterns of root acid phosphatase activity were characterized in situ with zymography at 7, 14, 21, and 28 days after sowing in a rhizobox. Under low P supply, wild barley had higher total root length (TRL), specific root length (SRL), and root branching intensity (RootBr) as well as higher activity of acid phosphatase (APase) in the rhizosphere, but lower root exudation of carboxylates and mycorrhizal colonization (MC), relative to domesticated barley. In response to neighboring faba bean, wild barley exhibited larger plasticity in all root morphological traits (TRL, SRL, and RootBr), while domesticated barley showed greater plasticity in root exudates of carboxylates and colonization by mycorrhiza. Wild barley with greater root morphology-related trait plasticity was a better match with faba bean than domesticated barley, indicated by higher P uptake benefits in wild barley/faba bean than domesticated barley/faba bean mixtures under low P supply. Our findings indicated that the domestication of barley disrupts the intercropping benefits with faba bean through the shifts of root morphological traits and their plasticity in barley. Such findings provide valuable information for barley genotype breeding and the selection of species combinations to enhance P uptake.
RESUMEN
KEY MESSAGE: Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.
Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido SimpleRESUMEN
The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.
Asunto(s)
Plantones , Triticum , Plantones/genética , Tetraploidía , Fitomejoramiento , Poaceae/genética , Tolerancia a la Sal/genética , Cromosomas de las Plantas/genéticaRESUMEN
Biological nitrification inhibitors are exudates from plant roots that can inhibit nitrification, and have advantages over traditional synthetic nitrification inhibitors. However, our understanding of the effects of biological nitrification inhibitors on nitrogen (N) loss and fertilizer N recovery efficiency in staple food crops is limited. In this study, acidic and calcareous soils were selected, and rice growth pot experiments were conducted to investigate the effects of the biological nitrification inhibitor, methyl 3-(4-hydroxyphenyl) propionate (MHPP) and/or a urease inhibitor (N-[n-butyl], thiophosphoric triamide [NBPT]) on NH3 volatilization, N leaching, fertilizer N recovery efficiency under a 20% reduction of the conventional N application rate. Our results show that rice yield and fertilizer N recovery efficiency were more sensitive to reduced N application in the calcareous soil than in the acidic soil. MHPP stimulated NH3 volatilization by 13.2% in acidic soil and 9.06% in calcareous soil but these results were not significant. In the calcareous soil, fertilizer N recovery efficiency significantly increased by 19.3% and 44.4% in the MHPP and NBPT+MHPP groups, respectively, relative to the reduced N treatment, and the rice yield increased by 16.7% in the NBPT+MHPP treatment (P < 0.05). However, such effects were not significant in the acidic soil. MHPP exerted a significant effect on soil ammonia oxidizers, and the response of abundance and community structure of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and total bacteria to MHPP depended on the soil type. MHPP+NBPT reduced NH3 volatilization, N leaching, and maintaining rice yield for a 20% reduction in conventional N fertilizer application rate. This could represent a viable strategy for more sustainable rice production, despite the inevitable increase in cost for famers.
Asunto(s)
Fertilizantes , Oryza , Amoníaco/análisis , Fertilizantes/análisis , Nitrificación , Nitrógeno , Oxidación-Reducción , Suelo/química , Microbiología del Suelo , VolatilizaciónRESUMEN
Increasing soil petroleum hydrocarbons (PHs) pollution have caused world-wide concerns. The removal of PHs from soils mainly involves physical, chemical, biological processes and their combinations. To date, most reviews in this field based on research articles, but limited papers focused on the integration of remediation technologies from the perspective of patents. In this study, 20-years Chinese patents related to the remediation of soil PHs were comprehensively analyzed. It showed an increasing number of patent applications and the patents' quantity were positively correlated with Chinese GDP over the years, suggesting the more the economy developed the more environmental problems and corresponding solutions emerged. In addition, chemical technologies were mostly used in a combination to achieve faster and better effects, while the physical technologies were often used alone due to high costs. In all PHs remediation techniques, bacteria-based bioremediation was the most used from 2000 to 2019. Bacillus spp. and Pseudomonas spp. were the most used bacteria for PHs treatment because these taxa were widely harboring functions such as biosurfactant production and hydrocarbon degradation. The future research on joint technologies combining microbial and physicochemical ones for better remediation effect and application are highly encouraged.
Asunto(s)
Petróleo , Contaminantes del Suelo , Bacterias/metabolismo , Biodegradación Ambiental , China , Hidrocarburos/metabolismo , Petróleo/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisisRESUMEN
Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.
Asunto(s)
Brassica napus , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , Ácido Glutámico , Planta de la Mostaza , SalicilatosRESUMEN
Nitrogen management measures (NMMs) such as the application of urease inhibitors (UIs), synthetic nitrification inhibitors (SNIs), and biochar (BC) are commonly used in mitigating nitrogen (N) loss and increasing fertilizer recovery efficiency (FRE) in agriculture. Calcareous soil under rice cropping is characterized by high nitrification potential, N loss risk, and low FRE. Application of SNIs may stimulate NH3 volatilization in high pH soils and the effects of SNIs on FRE are not always positive. BNIs have many advantages over SNIs. Whether combined application of BNI, UI, and BC that can result in a synergistic effect of improving FRE and decreasing N loss in a calcareous soil under rice cropping worth investigating. In this study, we conducted pot experiments to investigate the effects of single and co-application of BNI (methyl 3-(4-hydroxyphenyl) propionate or MHPP, 500 mg kg-1 soil), UI (N-(n-butyl), thiophosphoric triamide or NBPT, 2% of urea-N), or BC (wheat straw, 0.5% (w/w)) with chemical fertilizer on NH3 volatilization, N2O emission, N leaching, crop N uptake, and FRE in a calcareous soil under rice cropping. Our results demonstrated that those NMMs could mitigate NH3 volatilization by 12.5%-26.5%, N2O emission by 62.7%-73.5%, and N leaching loss by 17.5%-49.0%. However, BNI might have a risk of increasing NH3 (5.98%) volatilization loss. Among those NMMs, double inhibitors (BNI plus UI) yielded a synergistic effect that could mitigate N loss to the maximum extent and effectively improve FRE by 25.4%. The mechanisms of the above effects could be partly ascribed to the niche differentiation between the abundance of AOA and AOB and the changed community structure of AOB, which could further influence nitrification and N fate. Our results demonstrated that co-application of BNI and UI with urea is an effective strategy in reducing N loss and improving FRE in a calcareous soil under rice cropping.
Asunto(s)
Nitrificación , Oryza , Agricultura , Amoníaco/análisis , Carbón Orgánico , Fertilizantes/análisis , Nitrógeno , Suelo , Ureasa , VolatilizaciónRESUMEN
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 robust QTL were identified by more than three models. Nine of these QTL were consistent with those in previous studies. The remaining 18 QTL may be novel. We identified a major QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was validated in two recombinant inbred line populations with an average phenotypic difference of 16.07%. After combined homologous function annotation and expression analysis, TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our findings provide new insights into the genetic basis of yield-related traits and offer valuable QTL to breed wheat cultivars via marker-assisted selection.
RESUMEN
As an essential plant micronutrient, copper (Cu) is required as a component of several enzymes, but it can be highly toxic to plants when present in excess quantities. Nitrogen (N) application can help to alleviate the phytotoxic effects of heavy metals, including Cu, and different N forms significantly affect the uptake and accumulation of heavy metals in plants. The aim of this study was to determine the effects of different N forms, i.e., ammonium (NH4+) and nitrate (NO3-), on Cu detoxification in wheat seedlings. The inhibition of seedling growth under excess Cu was more obvious in wheat plants supplied with NO3- than in those supplied with NH4+. This growth inhibition was directly induced by excess Cu accumulation and reduced absorption of other mineral nutrients by the plants. Compared with seedlings treated with NO3-, those treated with NH4+ showed a decrease in Cu-induced toxicity as a result of increased antioxidant capacity in the leaves and a lower redox potential in the rhizosphere. Furthermore, treatment with NH4+ decreased the loss of mineral nutrients in wheat seedlings exposed to excess Cu. In conclusion, compared with supplying NO3-, supplying NH4+ to wheat seedlings under Cu stress improved their ability to maintain their nutritional and redox balance and increased their antioxidant capacity, thereby preventing a decline in photosynthesis. According to our results, NH4+ is more effective than NO3- in reducing Cu phytotoxicity in wheat seedlings.
Asunto(s)
Compuestos de Amonio , Plantones , Cobre/toxicidad , Homeostasis , Nitratos/toxicidad , Nitrógeno , Oxidación-Reducción , Fotosíntesis , Raíces de Plantas , TriticumRESUMEN
Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat (Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW), kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three continuous years. Based on population structure analysis, 223 A. tauschii were divided into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications based on cluster analysis were highly consistent with the population structure results. Meanwhile, the extent of linkage disequilibrium decay distance (r 2 = 0.5) was about 110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide association analysis was performed on these kernel traits using 6,723 single nucleotide polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven chromosomes, were identified using a mixed linear model explaining 4.82-13.36% of the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000, AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700). The transfer of beneficial genes from A. tauschii to wheat using marker-assisted selection will broaden the wheat D subgenome improve the efficiency of breeding.
RESUMEN
Controlled release fertilizer (CRF) has been shown to increase crop yield and N use efficiency (NUE) compared with traditional chemical fertilizer (TF). However, few studies examined the effects of CRF on CH4, N2O, and NO emissions simultaneously in alkaline paddy fields under rice-wheat rotation. In the present study, we conducted a 2-year field experiment to compare the effects of different CRF application strategies on these gas emissions with those of TF and explored the effects of CRF on global warming potential (GWP), crop yields, and greenhouse gas emission intensity (GHGI). Results showed that CRF can reduce 0.98-14.3%, 13.3-21.1%, and 8.22-16.3% of CH4, N2O, and NO emissions, respectively, in the studied alkaline paddy field. CRF reduce CH4 emission probably by regulating soil NH4+ concentration. CRF reduce N2O and NO emissions probably by regulating inorganic N content in the studied alkaline paddy soil. CRF had the same effect on annual crop yield as TF, especially when CRF was applied twice in each season and had the same N application rate as TF. Annual crop yields and the agronomic efficiency of N (AEN) increased by 8.24% and 21.6%, respectively. On the average of the two rice-wheat rotation cycles, GHGI significantly decreased by up to 14.1% after the application of CRF as relative to that after the application of TF (P < 0.05). These results suggest that CRF is an environment-friendly N fertilization strategy for mitigating GWP and ensuring high crop yield in an alkaline paddy field under rice-wheat rotation.