RESUMEN
The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate, or missing responses during personal interviews with cleanup workers conducted long after exposure. This paper also discusses possible developments and improvements in the methods to assess the radiation doses and associated uncertainties for cleanup workers.
Asunto(s)
Accidente Nuclear de Chernóbil , Exposición Profesional , Dosis de Radiación , Humanos , Ucrania/epidemiología , Exposición Profesional/efectos adversos , Masculino , Femenino , Exposición a la Radiación/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Adulto , Estudios Epidemiológicos , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiologíaRESUMEN
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Asunto(s)
Neoplasias Inducidas por Radiación , Exposición a la Radiación , Radiación Ionizante , Humanos , Exposición a la Radiación/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Historia del Siglo XX , Estudios Epidemiológicos , Historia del Siglo XXI , Exposición ProfesionalRESUMEN
An anonymous web-based survey was developed to check different aspects (SHAMISEN SINGS project): stakeholder awareness and perceptions of available mobile applications (apps) for measuring ionising radiation doses and health/well-being indicators; whether they would be ready to use them in the post-accidental recovery; and what are their preferred methodologies to acquire information etc. The results show that participation of the citizens would be most beneficial during post-accident recovery, providing individual measurements of external ionizing dose and health/well-being parameters, with possible follow-up. Also, participants indicated different preferences for sources to gain knowledge on ionising radiation and for the functions that an ideal app should have. The level of awareness and readiness to use apps to measure ionising radiation dose depended on two main aspects: individual differences (age & gender) and whether people were from countries affected by the previous major accidents. We concluded that stakeholders could have benefits from the data management plan: (1) it potentiates resilience at individual and community level; (2) citizens' measurements contribute to environmental monitoring and public health screening; (3) linkages between different types of data (environmental exposure, individual behavioural diaries, and measurements of health indicators) allow to perform more rigorous epidemiological studies.
Asunto(s)
Teléfono Celular , Aplicaciones Móviles , Liberación de Radiactividad Peligrosa , Resiliencia Psicológica , Humanos , Exposición a Riesgos AmbientalesRESUMEN
The effect of application of filters, made of different materials and various thickness, is studied by Monte Carlo calculations using MCNP6.2 code. The calculated data were validated by experimental studies (benchmark tests). Experimental results obtained for YAlO3:Mn high-Z TL detectors irradiated to different standard ISO radiation qualities (X-ray series N-40, N-60, N-80, N-100, N-120, N-150 and N-200 as well as isotopic series S-Cs) modified by various metal (copper and aluminum) filters of thickness of 0.5, 0.8 and 1 mm. The experimental results are compared with results of Monte Carlo simulations done for the same 'radiation-attenuator-detector' combinations and geometry. Obtained results show good consistence between the experimental and calculated data that testifies adequacy of the used calculations and their applicability to modeling of modification of an output from the high-Z detectors exposed to photons of various energies.
Asunto(s)
Aluminio , Fotones , Rayos X , Radiografía , Método de Montecarlo , RadiometríaRESUMEN
Response of personal dosemeters to high energy photon radiation is of great interest nowadays due to a spread of new radiation technologies and the expansion of occupational exposure domains. ICRU95 publication has expanded the range of relevant photon energies upwards, setting new horizons for individual monitoring. Beryllium oxide (BeO) material is increasingly popular due to its excellent optically stimulated luminescence (OSL) properties, simple readout and reasonable energy response in the low energy (below 100 keV) range. The study considers energy dependence of OSL response at higher photon energies. Energy deposition of monoenergetic photons with energy up to 15 MeV in the BeO chips of various thickness was modeled with Monte Carlo MCNP 6.2 code. Benchmark experiments were conducted at LINAC with high voltage of 6, 10 and 15 MV resulting in respective incident photon spectra. The findings of this study add knowledge regarding behavior of BeO personal dosemeters in the photon fields within the energy range above 3 MeV.
Asunto(s)
Luminiscencia , Fotones , Radioterapia de Alta Energía , Método de MontecarloRESUMEN
Following the publication of the joint The International Commissions on Radiation Units and Measurements (ICRU) and on Radiological Protection (ICRP) report on new operational quantities for radiation protection, the European Dosimetry Group (EURADOS) have carried out an initial evaluation. The EURADOS report analyses the impact that the new quantities will have on: radiation protection practice; calibration and reference fields; European and national regulation; international standards and, especially, dosemeter and instrument design. The task group included experienced scientists drawn from across the various EURADOS working groups.
Asunto(s)
Monitoreo de Radiación , Protección Radiológica , Radiometría , Dosímetros de Radiación , Calibración , Estándares de Referencia , Dosis de RadiaciónRESUMEN
OBJECTIVE: To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN: Systematic review and meta-analysis. MAIN OUTCOME MEASURES: Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES: PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS: The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS: Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020202036.
Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Isquemia Miocárdica/epidemiología , Isquemia Miocárdica/etiología , Factores de Riesgo , Francia , Radiación Ionizante , Enfermedad de la Arteria Coronaria/complicacionesRESUMEN
The present paper reviews the uncertainties and errors in complex dosimetry systems that were developed to estimate individual doses in different post-Chernobyl (Chornobyl) radiation epidemiology studies among the general population and the cleanup workers. These uncertainties and errors are associated with (i) instrumental radiation measurements of humans and environmental samples, (ii) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters, and (iii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate, or missing responses during personal interview with study subjects conducted long after exposure. Relative measurement errors of 131I thyroid activity associated with devices for measuring radioactivity in the thyroid reached up to 0.86 (coefficient of variation). The inherent uncertainty in estimates of individual doses varied between different studies and exposure pathways (GSD from 1.2 to 15 for model-based doses and from 1.3 to 5.1 for measurement-based doses). The human factor uncertainties can cause individual doses to be underestimated or overestimated by an average of 10 times for model-based doses and 2 times for measurement-based doses calculated for the general population and up to 3 times for doses calculated for cleanup workers. The sources of errors and uncertainties, especially the human factor uncertainties, should be carefully considered in dose assessment for radiation epidemiological studies, with particular attention to studies involving persons without instrumental radiation measurements.
Asunto(s)
Accidente Nuclear de Chernóbil , Humanos , Dosis de Radiación , Radioisótopos de Yodo , Incertidumbre , Medición de Riesgo/métodosRESUMEN
This original study aims to quantify the human factor uncertainties in radiation doses for Chernobyl cleanup workers that are associated with errors in direct or proxy personal interviews due to poor memory recall a long time after exposure. Two types of doses due to external irradiation during cleanup mission were calculated independently. First, a "reference" dose, that was calculated using the historical description of cleanup activities reported by 47 cleanup workers shortly after the completion of the cleanup mission. Second, a "current" dose that was calculated using information reported by 47 cleanup workers and respective 24 proxies (colleagues) nominated by cleanup workers during a personal interview conducted more recently, as part of this study, i.e., 25-30 years after their cleanup missions. The Jaccard similarity coefficient for reference and current doses was moderate: the arithmetic mean ± standard deviation was 0.29 ± 0.18 (median = 0.31) and 0.23 ± 0.18 (median = 0.22) for the cleanup worker's and proxy's interviews, respectively. The agreement between two doses was better if the cleanup worker was interviewed rather than his proxy: the median ratio of current to reference dose was 1.0 and 0.56 for cleanup workers and proxies, respectively. The present study has shown that human factor uncertainties lead to underestimation or overestimation of the "true" reference dose for most cleanup workers up to 3 times. In turn, the potential impact of these errors on radiation-related risk estimates should be assessed.
Asunto(s)
Accidente Nuclear de Chernóbil , Exposición Profesional , Liberación de Radiactividad Peligrosa , Humanos , Exposición Profesional/análisis , Dosis de Radiación , Radiometría , Reproducibilidad de los Resultados , Encuestas y CuestionariosRESUMEN
A large excess risk of thyroid cancer was observed among Belarusian/Russian/Baltic Chornobyl cleanup workers. A more recent study of Ukraine cleanup workers found more modest excess risks of thyroid cancer. Dose errors in this data are substantial, associated with model uncertainties and questionnaire response. Regression calibration is often used for dose-error adjustment, but may not adequately account for the full error distribution. We aimed to examine the impact of exposure-assessment uncertainties on thyroid cancer among Ukrainian cleanup workers using Monte Carlo maximum likelihood, and compare with results derived using regression calibration. Analyses assessed the sensitivity of results to various components of internal and external dose. Regression calibration yielded an excess odds ratio per Gy (EOR/Gy) of 0.437 (95% CI - 0.042, 1.577, p = 0.100), compared with the EOR/Gy using Monte Carlo maximum likelihood of 0.517 (95% CI - 0.039, 2.035, p = 0.093). Trend risk estimates for follicular morphology tumors exhibited much more extreme effects of full-likelihood adjustment, the EOR/Gy using regression calibration of 3.224 (95% CI - 0.082, 30.615, p = 0.068) becoming ~ 50% larger, 4.708 (95% CI - 0.075, 85.143, p = 0.066) when using Monte Carlo maximum likelihood. Results were sensitive to omission of external components of dose. In summary, use of Monte Carlo maximum likelihood adjustment for dose error led to increases in trend risks, particularly for follicular morphology thyroid cancers, where risks increased by ~ 50%, and were borderline significant. The unexpected finding for follicular tumors needs to be replicated in other exposed groups.
Asunto(s)
Accidente Nuclear de Chernóbil , Neoplasias Inducidas por Radiación , Neoplasias de la Tiroides , Humanos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Dosis de Radiación , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiología , Ucrania/epidemiologíaRESUMEN
Although much is known about the radiation-related risk of thyroid cancer in those exposed at young ages, less is known about the risk due to adult exposure, particularly in men. We aimed to examine the association between thyroid radiation dose received during adulthood and thyroid cancer risk in men. We conducted a nested case-control study (149 cases; 458 controls) of male, Ukrainian cleanup workers who first worked in the Chornobyl zone between ages 18 and 59 years, with cases identified through linkage with the National Cancer Registry of Ukraine from 1988 to 2012. Individual thyroid doses due to external and internal exposure during the cleanup mission and during residence in contaminated settlements were estimated (total dose mean 199 mGy; range 0.15 mGy to 9.0 Gy). The excess odds ratio per gray (EOR/Gy) for overall thyroid cancer was 0.40 (95% CI: - 0.05, 1.48; p-value = 0.118). Time since exposure was borderline significant (p-value = 0.061) in modifying this association so that less time since exposure was associated with a stronger EOR/Gy. An elevated, but nonsignificant association was observed for follicular thyroid cancer (EOR/Gy = 1.72; 95% CI: - 0.25, 13.69; p-value = 0.155) based on a small number of cases (n = 24). Our findings for radiation-related overall thyroid cancer risk are consistent with evidence of increased risks observed in most of the other studies of adult exposure, though the magnitude of the effect in this study is lower than in the previous case-control study of Chornobyl cleanup workers.
Asunto(s)
Accidente Nuclear de Chernóbil , Neoplasias Inducidas por Radiación , Exposición Profesional , Neoplasias de la Tiroides , Adolescente , Adulto , Estudios de Casos y Controles , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Exposición Profesional/efectos adversos , Dosis de Radiación , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiología , Ucrania/epidemiología , Adulto JovenRESUMEN
This article presents a methodology for assessing the radiation doses in an urban environment due to external irradiation from radionuclides deposited on the ground and other surfaces as well as from a passing radioactive cloud. The approach was developed and applied to assess individual doses of residents of the town of Pripyat who were evacuated shortly after the Chernobyl accident. Typically, the so-called location factor is defined as the ratio of the dose rate at a point of exposure and the dose rate at an undisturbed lawn far from any buildings. The present study used a new definition of the location factor as a regular four-dimensional grid of ratios of air kerma rates indoors and outdoors distributed in space and time. The location factors were calculated for two scenarios: outdoor and indoor values for typical apartments and buildings in Pripyat. Indoor location factors varied within two orders of magnitude depending on the floor of residence and place of staying inside the apartment. Values of the indoor location factor differed during the daytime and night by a factor of 30-40 depending on the behaviour of an individual within the apartment. Both, outdoor and indoor location factors decreased with decreasing distances between buildings. It was shown that during the first 4 days after the accident, air kerma rates in Pripyat were governed by the radionuclides deposited on the ground surface, and not by radionuclides in the cloud. Specifically, the contribution of the radioactive cloud to air kerma rate was maximal (i.e., 2.3%) on the morning of 28 April 1986. The methodology and results of this study are currently being used to reconstruct the radiation gonadal dose for the subjects of the American-Ukrainian study of parental irradiation in Chernobyl cleanup workers and evacuees for investigating germline mutations in their offspring.
Asunto(s)
Accidente Nuclear de Chernóbil , Humanos , Dosis de Radiación , RadioisótoposRESUMEN
Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.
RESUMEN
Radiation doses of parents exposed from the Chornobyl accident as cleanup workers or evacuees were estimated in the National Cancer Institute-National Research Center for Radiation Medicine trio (i.e. father, mother, offspring) study aimed at investigating the radiation effects on germlinede novomutations in children as well as other outcomes. Paternal (testes) and maternal (ovaries) gonadal doses were calculated along with associated uncertainty distributions for the following exposure pathways: (a) external irradiation during the cleanup mission, (b) external irradiation during residence in Pripyat, and (c) external irradiation and (d) ingestion of radiocesium isotopes, such as134Cs and137Cs, during residence in settlements other than Pripyat. Gonadal doses were reconstructed for 298 trios for the periods from the time of the accident on 26 April 1986 to two time points before the child's date of birth (DOB): 51 (DOB-51) and 38 (DOB-38) weeks. The two doses, DOB-51 and DOB-38 were equal (within 1 mGy) in most instances, except for 35 fathers where the conception of the child occurred within 3 months of exposure or during exposure. The arithmetic mean of gonadal DOB-38 doses was 227 mGy (median: 11 mGy, range 0-4080 mGy) and 8.5 mGy (median: 1.0 mGy, range 0-550 mGy) for fathers and mothers, respectively. Gonadal doses varied considerably depending on the exposure pathway, the highest gonadal DOB-38 doses being received during the cleanup mission (mean doses of 376 and 34 mGy, median of 144 and 7.4 mGy for fathers and mothers, respectively), followed by exposure during residence in Pripyat (7.7 and 13 mGy for mean, 7.2 and 6.2 mGy for median doses) and during residence in other settlements (2.0 and 2.1 mGy for mean, 0.91 and 0.81 mGy for median doses). Monte Carlo simulations were used to estimate the parental gonadal doses and associated uncertainties. The geometric standard deviations (GSDs) in the individual parental stochastic doses due to external irradiation during the cleanup mission varied from 1.2 to 4.7 (mean of 1.8), while during residence in Pripyat they varied from 1.4 to 2.8 (mean of 1.8), while the mean GSD in doses received during residence in settlements other than Pripyat was 1.3 and 1.4 for external irradiation and ingestion of radiocesium isotopes, respectively.
Asunto(s)
Accidente Nuclear de Chernóbil , Exposición Profesional , Mutación de Línea Germinal , Humanos , Padres , Dosis de Radiación , Estados UnidosRESUMEN
The experiences of the Chernobyl and Fukushima nuclear accidents showed that dosimetry was the essential tool in the emergency situation for decision making processes, such as evacuation and application of protective measures. However, at the consequent post-accidental phases, it was crucial also for medical health surveillance and in further adaptation to changed conditions with regards to radiation protection of the affected populations. This review provides an analysis of the experiences related to the role of dosimetry (dose measurements, assessment and reconstruction) regarding health preventive measures in the post-accidental periods on the examples of the major past nuclear accidents such as Chernobyl and Fukushima. Recommendations derived from the review are called to improve individual dose assessment in case of a radiological accident/incident and should be considered in advance as guidelines to follow for having better information. They are given as conclusions.
Asunto(s)
Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Protección Radiológica , Humanos , JapónRESUMEN
In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.
Asunto(s)
Catarata , Cristalino , Exposición Profesional , Traumatismos por Radiación , Catarata/epidemiología , Catarata/etiología , Humanos , Dosis de Radiación , Traumatismos por Radiación/epidemiología , Traumatismos por Radiación/etiología , Radiación IonizanteRESUMEN
Although transgenerational effects of exposure to ionizing radiation have long been a concern, human research to date has been confined to studies of disease phenotypes in groups exposed to high doses and high dose rates, such as the Japanese atomic bomb survivors. Transgenerational effects of parental irradiation can be addressed using powerful new genomic technologies. In collaboration with the Ukrainian National Research Center for Radiation Medicine, the US National Cancer Institute, in 2014-2018, initiated a genomic alterations study among children born in selected regions of Ukraine to cleanup workers and/or evacuees exposed to low-dose-rate radiation after the 1986 Chornobyl (Chernobyl) nuclear accident. To investigate whether parental radiation exposure is associated with germline mutations and genomic alterations in the offspring, we are collecting biospecimens from father-mother-offspring constellations to study de novo mutations, minisatellite mutations, copy-number changes, structural variants, genomic insertions and deletions, methylation profiles, and telomere length. Genomic alterations are being examined in relation to parental gonadal dose, reconstructed using questionnaire and measurement data. Subjects are being recruited in exposure categories that will allow examination of parental origin, duration, and timing of exposure in relation to conception. Here we describe the study methodology and recruitment results and provide descriptive information on the first 150 families (mother-father-child(ren)) enrolled.
Asunto(s)
Accidente Nuclear de Chernóbil , Mutación de Línea Germinal , Exposición Materna/efectos adversos , Exposición Paterna/efectos adversos , Dosis de Radiación , Adulto , Femenino , Estudios de Seguimiento , Humanos , Masculino , Adulto JovenRESUMEN
The HARMONIC project (Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy in Paediatrics) is a European study aiming to improve our understanding of the long-term health risks from radiation exposures in childhood and early adulthood. Here, we present the study design for the cardiac fluoroscopy component of HARMONIC. A pooled cohort of approximately 100 000 patients who underwent cardiac fluoroscopy procedures in Belgium, France, Germany, Italy, Norway, Spain or the UK, while aged under 22 years, will be established from hospital records and/or insurance claims data. Doses to individual organs will be estimated from dose indicators recorded at the time of examination, using a lookup-table-based dosimetry system produced using Monte Carlo radiation transport simulations and anatomically realistic computational phantom models. Information on beam geometry and x-ray energy spectra will be obtained from a representative sample of radiation dose structured reports. Uncertainties in dose estimates will be modelled using 2D Monte Carlo methods. The cohort will be followed up using national registries and insurance records to determine vital status and cancer incidence. Information on organ transplantation (a major risk factor for cancer development in this patient group) and/or other conditions predisposing to cancer will be obtained from national or local registries and health insurance data, depending on country. The relationship between estimated radiation dose and cancer risk will be investigated using regression modelling. Results will improve information for patients and parents and aid clinicians in managing and implementing changes to reduce radiation risks without compromising medical benefits.
Asunto(s)
Neoplasias , Radiometría , Adulto , Anciano , Niño , Fluoroscopía/efectos adversos , Humanos , Método de Montecarlo , Neoplasias/radioterapia , Fantasmas de Imagen , Dosis de Radiación , Radiometría/métodos , Factores de RiesgoRESUMEN
Thyroid doses were estimated for 607 subjects of a case-control study of thyroid cancer nested in the cohort of 150,813 male Ukrainian cleanup workers who were exposed to radiation as a result of the 1986 Chernobyl nuclear power plant accident. Individual thyroid doses due to external irradiation, inhalation of I and short-lived radioiodine and radiotellurium isotopes (I, I, I, Te, and Te) during the cleanup mission, and intake of I during residence in contaminated settlements were calculated for all study subjects, along with associated uncertainty distributions. The average thyroid dose due to all exposure pathways combined was estimated to be 199 mGy (median: 47 mGy; range: 0.15 mGy to 9.0 Gy), with averages of 140 mGy (median: 20 mGy; range: 0.015 mGy to 3.6 Gy) from external irradiation during the cleanup mission, 44 mGy (median: 12 mGy; range: ~0 mGy to 1.7 Gy) due to I inhalation, 42 mGy (median: 7.3 mGy; range: 0.001 mGy to 3.4 Gy) due to I intake during residence, and 11 mGy (median: 1.6 mGy; range: ~0 mGy to 0.38 Gy) due to inhalation of short-lived radionuclides. Internal exposure of the thyroid gland to I contributed more than 50% of the total thyroid dose in 45% of the study subjects. The uncertainties in the individual stochastic doses were characterized by a mean geometric standard deviation of 2.0, 1.8, 2.0, and 2.6 for external irradiation, inhalation of I, inhalation of short-lived radionuclides, and residential exposure, respectively. The models used for dose calculations were validated against instrument measurements done shortly after the accident. Results of the validation showed that thyroid doses could be estimated retrospectively for Chernobyl cleanup workers two to three decades after the accident with a reasonable degree of reliability.