Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713233

RESUMEN

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Asunto(s)
Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Alcaloides de Claviceps/biosíntesis , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Aldehídos/metabolismo , Aldehídos/química , Oxidación-Reducción , Dominio Catalítico , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química
2.
Chem Biodivers ; : e202400519, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576052

RESUMEN

One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.

3.
Anal Chem ; 96(11): 4463-4468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38462969

RESUMEN

The surge in applications of nitrile compounds across diverse fields, such as pharmaceuticals, agrochemicals, dyes, and functional materials, necessitates the development of rapid and efficient detection and identification methods. In this study, we introduce a chemosensing strategy employing a novel 19F-labeled probe, facilitating swift and accurate analysis of a broad spectrum of nitrile-containing analytes. This approach leverages the reversible interaction between the 19F-labeled probe and the analytes to produce chromatogram-like outputs, ensuring the precise identification of various pharmaceuticals and pesticides within complex matrices. Additionally, this dynamic system offers a versatile platform to investigate through-space 19F-19F interactions, showcasing its potential for future applications in mechanistic studies.

4.
Chemistry ; : e202400237, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556465

RESUMEN

Heterocyclic trifluoromethylation is efficiently initiated through a photochemical reaction utilizing an electron donor-acceptor (EDA) complex, proceeding smoothly without the use of photocatalysts, transition-metal catalysts, or additional oxidants. This method has been optimized through extensive experimentation, demonstrating its versatility and efficacy across various substrates, including quinoxalinones, coumarins, and indolones. Notably, this approach enables the practical synthesis of trifluoromethylated quinoxalinones on a gram scale. Mechanistic investigations that incorporate radical trapping and ultraviolet/visible spectroscopy, confirmed the formation of the an EDA complex and elucidated the reaction pathways. This study highlights the crucial role of EDA photoactivation in trifluoromethylation, significantly expanding the application scope of EDA complexes in chemical synthesis.

5.
Fitoterapia ; 174: 105880, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431026

RESUMEN

An undescribed trichodenone derivative (1), two new diketopiperazines (3 and 4) along with a bisabolane analog (2) were isolated from Trichoderma hamatum b-3. The structures of the new findings were established through comprehensive analyses of spectral evidences in HRESIMS, 1D and 2D NMR, Marfey's analysis as well as comparisons of ECD. The absolute configuration of 2 was unambiguously confirmed by NMR, ECD calculation and Mo2(AcO)4 induced circular dichroism. Compounds 1-4 were tested for their fungicidal effects against eight crop pathogenic fungi, among which 1 showed 51% inhibition against Sclerotinia sclerotiorum at a concentration of 50 µg/mL.


Asunto(s)
Hypocreales , Trichoderma , Estructura Molecular , Dicetopiperazinas/química , Trichoderma/química
6.
Pest Manag Sci ; 80(3): 1632-1644, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987532

RESUMEN

BACKGROUND: Suspension concentrate (SC) is one of the most widely used formulations for agricultural plant protection. With the rapid development of unmanned aerial vehicle (UAV) plant protection, the problems of spray drift, droplet rebound and poor wettability in the application of SC from UAVs have attracted wide attention. Although some tank-mix adjuvants have been used to enhance dosage delivery for UAV, their effects and mechanisms are not fully clear, and few formulations are specifically designed for UAV. RESULTS: The type and concentration of tank-mix adjuvant affect the dosage delivery of SC. MO501 can significantly reduce DV<100µm , and inhibit droplet rebound on peanut leaves at concentrations ≥0.5%. Silwet 408 can achieve complete wetting and superspreading after adding ≥0.2% concentrations, but only ≥0.5% can inhibit rebound. XL-70 shows excellent regulation ability even at low concentration, and 0.2% concentration can simultaneously suppress impact and promote spreading. Besides, the formulation oil dispersion (OD) can significantly reduce the driftable fine fraction and inhibit rebound at dilution ratios of ≤250-fold, thus enhancing dosage delivery. CONCLUSION: SC is prone to rebound on hydrophobic leaf surfaces and shows poor wetting and spreading properties. Appropriate types and concentrations of tank-mix adjuvants and formulation improvement are two effective strategies for improving the dosage delivery of pesticides, whereas the addition of inappropriate adjuvants may cause potential risks instead. These findings provide guidance for the rational selection of tank-mix adjuvants and potential applications of OD for UAV plant protection. © 2023 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Plaguicidas/química , Arachis , Dispositivos Aéreos No Tripulados , Agricultura , Humectabilidad
7.
J Am Chem Soc ; 145(44): 23910-23917, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883710

RESUMEN

The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.

8.
Sci Bull (Beijing) ; 68(18): 2033-2041, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37507259

RESUMEN

Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.

9.
J Org Chem ; 88(13): 9372-9380, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343224

RESUMEN

Visible-light-induced decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids with [Me4N][SeCF3], oxidant, and catalysts afforded a variety of (hetero)aryl trifluoromethyl selenoethers in good yields. The reaction might involve a radical process, which generated (hetero)aryl radicals from the stable (hetero)aromatic carboxylic acids via oxidative decarboxylation with NFSI as the oxidant, [di-tBu-Mes-Acr-Ph][BF4] as the photocatalyst, and 1,1'-biphenyl as the cocatalyst. Both catalysts had a decisive influence on the reaction. The trifluoromethylselenolation was further promoted by the copper salts probably via Cu-mediated cross-coupling of the sensitive SeCF3 species with the in situ formed (hetero)aryl radicals. Advantages of the method include visible light irradiation, mild reaction conditions at ambient temperature, good functional group tolerance, no pre-functionalization/activation of the starting carboxylic acids, and applicability to drug molecules. This protocol is promising and synthetically useful, which overcame the limitations of the known trifluoromethylselenolation methods and represented the first decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids.


Asunto(s)
Ácidos Carboxílicos , Cobre , Cobre/química , Descarboxilación , Ácidos Carbocíclicos , Ácidos Carboxílicos/química , Oxidantes
10.
Mar Drugs ; 21(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367687

RESUMEN

Fifteen new diterpenoids, namely xishaklyanes A-O (1-15), along with three known related ones (16-18), were isolated from the soft coral Klyxum molle collected from Xisha Islands, South China Sea. The stereochemistry of the new compounds was elucidated by a combination of detailed spectroscopic analyses, chemical derivatization, quantum chemical calculations, and comparison with the reported data. The absolute configuration of compound 18 was established by the modified Mosher's method for the first time. In bioassay, some of these compounds exhibited considerable antibacterial activities on fish pathogenic bacteria, and compound 4 showed the most effective activity with MIC of 0.225 µg/mL against Lactococcus garvieae.


Asunto(s)
Antozoos , Diterpenos , Animales , Antozoos/química , Diterpenos/química , China , Antibacterianos/farmacología , Estructura Molecular
11.
Phytochem Anal ; 34(5): 548-559, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199038

RESUMEN

INSTRUCTION: Hypericum bellum Li is rich in xanthones with various bioactivities, especially in anti-breast cancer. While the scarcity of mass spectral data of xanthones in Global Natural Products Social Molecular Networking (GNPS) libraries have challenged the rapid recognition of xanthones with similar structures. OBJECTIVE: This study is aimed to enhance the molecular networking (MN)-based dereplication and visualisation ability of potential anti-breast cancer xanthones from H. bellum to overcome the scarcity of xanthones mass spectral data in GNPS libraries. Separating and purifying the MN-screening bioactive xanthones to verify the practicality and accuracy of this rapid recognition strategy. METHODOLOGY: A combined strategy of "seed" mass spectra-based MN, in silico annotation tools, substructure identification tools, reverse molecular docking, ADMET screening, molecular dynamics (MDs) simulation experiments, and an MN-oriented separation procedure was first introduced to facilitate the rapid recognition and targeted isolation of potential anti-breast cancer xanthones in H. bellum. RESULTS: A total of 41 xanthones could only be tentatively identified. Among them, eight xanthones were screened to have potential anti-breast cancer activities, and six xanthones that were initially reported in H. bellum were obtained and verified to have good binding abilities with their paired targets. CONCLUSION: This is a successful case study that validated the application of "seed" mass spectral data could overcome the drawbacks of GNPS libraries with limited mass spectra and enhance the accuracy and visualisation of natural products (NPs) dereplication, and this rapid recognition and targeted isolation strategy can be also applicable for other types of NPs.


Asunto(s)
Productos Biológicos , Hypericum , Neoplasias , Xantonas , Espectrometría de Masas en Tándem/métodos , Hypericum/química , Xantonas/farmacología , Xantonas/química , Simulación del Acoplamiento Molecular
12.
Chem Biodivers ; 20(7): e202300662, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37254816

RESUMEN

Two new cembranoids, namely sarcoboettgerols D and E, together with four known related ones, have been isolated from the soft coral Sarcophyton boettgeri collected from Weizhou Island in the South China Sea. Their structures including absolute configurations were elucidated by extensive spectroscopic analysis, quantum mechanical nuclear magnetic resonance methods, time-dependent density functional theory-electronic circular dichroism calculations, as well as comparison with the reported data in the literature. A plausible biogenetic relationship of four cembranoids was proposed. In bioassays, sarcomililatin B exhibited cytotoxic activity against H1299 cell (IC50 =35.0 µM), whereas sarcomililatin B and sarcomililatin A displayed moderate antibacterial activities (MIC 17.4-34.8 µg/mL).


Asunto(s)
Antozoos , Antineoplásicos , Diterpenos , Animales , Humanos , Antozoos/anatomía & histología , Antozoos/química , Antozoos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Diterpenos/química , Diterpenos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular
13.
Curr Opin Chem Biol ; 75: 102330, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257309

RESUMEN

Among the large series of marine natural products (MNPs), sulfur-containing MNPs have emerged as potential therapeutic agents for the treatment of a range of diseases. Herein, we reviewed 95 new sulfur-containing MNPs isolated during the period between 2021 and March 2023. In addition, we discuss that the widely used strategies and the emerging technologies including natural product-based antibody drug conjugates (ADCs), small-molecule-based proteolysis targeting chimeras (PROTACs), nanotechnology-based drug carriers, artificial intelligence (AI)-driven drug discovery have been used for improving the efficiency and success rate of NP-based drug development. We also provide perspectives regarding the challenges and opportunities in sulfur-containing MNPs based drug discovery and development and future research directions.


Asunto(s)
Inteligencia Artificial , Productos Biológicos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Proteolisis
14.
Nat Commun ; 14(1): 2322, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087477

RESUMEN

Here, we report an asymmetric electrochemical organonickel-catalyzed reductive cross-coupling of aryl aziridines with aryl iodides in an undivided cell, affording ß-phenethylamines in good to excellent enantioselectivity with broad functional group tolerance. The combination of cyclic voltammetry analysis of the catalyst reduction potential as well as an electrode potential study provides a convenient route for reaction optimization. Overall, the high efficiency of this method is credited to the electroreduction-mediated turnover of the nickel catalyst instead of a metal reductant-mediated turnover. Mechanistic studies suggest a radical pathway is involved in the ring opening of aziridines. The statistical analysis serves to compare the different design requirements for photochemically and electrochemically mediated reactions under this type of mechanistic manifold.

15.
Chem Rec ; 23(9): e202300071, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37098875

RESUMEN

Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.

16.
J Agric Food Chem ; 71(16): 6226-6235, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053087

RESUMEN

Streptochlorin is a kind of indole alkaloid derived from marine microorganisms. It is a promising lead compound due to its potent bioactivity in preventing many phytopathogens, as shown in our previous study. To explore the potential applications of this natural product, a series of novel benzoxaborole-containing streptochlorin derivatives were designed and synthesized through a one-step and catalyst-free reaction in water at room temperature. All target compounds were first screened for their antifungal profiles in vitro against six common phytopathogenic fungi. The results of bioassay revealed that most of the designed compounds exhibited more significant antifungal activities against Botrytis cinrea, Gibberella zeae, Rhizoctorzia solani, Colletotrichum lagenarium, and alternaria leaf spot under the concentration of 50 µg/mL, and this is highlighted by compounds 4i and 5f, which demonstrated impressive antifungal effects against G. zeae and R. solani, with their corresponding EC50 values 0.2983 and 0.2657 µg/mL, which are obviously better than positive control flutriafol and boscalid (5.2606 and 1.2048 µg/mL, respectively). Scanning electron microscopy on the hyphae morphology showed that compound 5b might cause mycelial abnormalities of G. zeae. 3D-QSAR studies of CoMFA and CoMSIA were carried out on 29 target compounds with antifungal activity against B. cinrea. The analysis results indicated that introducing appropriate electronegative groups at the 5-position of benzoxaborole and the 4,5-positions of the indole ring could effectively improve the anti-B. cinrea activity. Moreover, compound 5b showed good antifungal activities in vivo against Phytophthora capsici. Molecular docking was further explored to ascertain the practical value of the active compound as a potential inhibitor of LeuRS. The abovementioned results indicate that the designed benzoxaborole-containing streptochlorin derivatives could be further studied as template molecules of novel antifungal agents.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Relación Estructura-Actividad Cuantitativa , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular
17.
Org Lett ; 25(10): 1760-1764, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867548

RESUMEN

Quinolizidomycins A (1) and B (2), two unprecedented quinolizidine alkaloids featuring a tricyclic 6/6/5 ring system, were isolated from Streptomyces sp. KIB-1714. Their structures were assigned by detailed spectroscopic data analyses and X-ray diffraction. Stable isotope labeling experiments suggested that compounds 1 and 2 are derived from lysine, ribose 5-phosphate, and acetate units, which indicates an unprecedented manner of assembly of the quinolizidine (1-azabicyclo[4.4.0]decane) scaffold in quinolizidomycin biosynthesis. Quinolizidomycin A (1) was active in an acetylcholinesterase inhibitory assay.


Asunto(s)
Alcaloides , Streptomyces , Alcaloides de Quinolizidina , Alcaloides/química , Streptomyces/química , Acetilcolinesterasa , Estructura Molecular
18.
Bioorg Chem ; 134: 106442, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878064

RESUMEN

Dual inhibitors of JAK2 and FLT3 can synergistically control the development of acute myeloid leukemia (AML), and overcome secondary drug resistance of AML that is associated with FLT3 inhibition. We therefore designed and synthesized a series of 4-piperazinyl-2-aminopyrimidines as dual inhibitors of JAK2 and FLT3, and improved their selectivity for JAK2. Screening cascades revealed that compound 11r exhibited inhibitory activity with IC50 values of 2.01, 0.51, and 104.40 nM against JAK2, FLT3, and JAK3, respectively. Compound 11r achieved a high selectivity for JAK2 at a ratio of 51.94, and also showed potent antiproliferative activity in HEL (IC50 = 1.10 µM) and MV4-11 (IC50 = 9.43 nM) cell lines. In an in vitro metabolism assay, 11r exhibited moderate stability in human liver microsomes (HLMs), with a half-life time of 44.4 min, and in rat liver microsomes (RLMs), with a half-life of 143 min. In pharmacokinetic studies, compound 11r showed moderate absorption (Tmax = 5.33 h), with a peak concentration of 38.7 ng/mL and an AUC of 522 ng h/mL in rats, and an oral bioavailability of 25.2%. In addition, 11r induced MV4-11 cell apoptosis in a dose-dependent manner. These results indicate that 11r is a promising selective JAK2/FLT3 dual inhibitor.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Ratas , Humanos , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Microsomas Hepáticos/metabolismo , Apoptosis , Tirosina Quinasa 3 Similar a fms/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Janus Quinasa 2/metabolismo
19.
Eur J Med Chem ; 251: 115242, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889251

RESUMEN

Polo like kinase 1 (PLK1) is a serine/threonine kinase that is widely distributed in eukaryotic cells and plays an important role in multiple phases of the cell cycle. Its importance in tumorigenesis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of novel dihydropteridone derivatives (13a-13v and 21g-21l) possessing oxadiazoles moiety as potent inhibitors of PLK1. Compound 21g exhibited improved PLK1 inhibitory capability with an IC50 value of 0.45 nM and significant anti-proliferative activities against four tumor-derived cell lines (MCF-7 IC50 = 8.64 nM, HCT-116 IC50 = 26.0 nM, MDA-MB-231 IC50 = 14.8 nM and MV4-11 IC50 = 47.4 nM) with better pharmacokinetic characteristics than BI2536 in mice (AUC0-t = 11 227 ng h mL-1vs 556 ng h mL-1). Moreover, 21g exhibited moderate liver microsomal stability and excellent pharmacokinetic profile (AUC0-t = 11227 ng h mL-1, oral bioavailability of 77.4%) in Balb/c mice, acceptable PPB, improved PLK1 inhibitory selectivity, and no apparent toxicity was observed in the acute toxicity assay (20 mg/kg). Further investigation showed that 21 g could arrest HCT-116 cells in G2 phase and induce apoptosis in a dose-dependent manner. These results indicate that 21g is a promising PLK1 inhibitor.


Asunto(s)
Antineoplásicos , Ratones , Animales , Proliferación Celular , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Línea Celular Tumoral , Apoptosis
20.
Chem Rec ; 23(5): e202300020, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995073

RESUMEN

Carbon-heteroatom bond formation under transition-metal free conditions provides a powerful synthetic alternative for the efficient synthesis of valuable molecules. In particular, C-N and C-O bonds are two important types of carbon-heteroatom bonds. Thus, continuous efforts have been deployed to develop novel C-N/C-O bond formation methodologies involving various catalysts or promoters under TM-free conditions, which enables the synthesis of various functional molecules comprising C-N/C-O bonds in a facile and sustainable manner. Considering the significance of C-N/C-O bond construction in organic synthesis and materials science, this review aims to comprehensively present selected examples on the construction of C-N (including amination and amidation) and C-O (including etherification and hydroxylation) bonds without transition metals. Besides, the involved promoters/catalysts, substrate scope, potential application and possible reaction mechanisms are also systematically discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA