Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Inflammopharmacology ; 32(2): 1499-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112964

RESUMEN

Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.


Asunto(s)
Curcumina , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Sirtuina 1/metabolismo , Curcumina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedades Neuroinflamatorias , Cognición , Ratones Endogámicos C57BL
2.
Eur J Pharmacol ; 950: 175762, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164119

RESUMEN

Benign prostatic hyperplasia (BPH) is characterized by non-malignant enlargement of prostate cells causing many lower urinary tract symptoms. BPH pathogenesis includes androgens receptors signaling pathways, oxidative stress, apoptosis, and possibly changes in IGF-1/PI3K/AKT/FOXO pathway. Altogether, modulating IGF-1/PI3K/AKT/FOXO signaling along with regulating oxidative stress and apoptosis might preserve prostatic cells from increased proliferation. Beyond statins' common uses, they also have anti-inflammatory, antioxidant, and anti-tumor effects. This study aims to determine simvastatin's beneficial effect on testosterone-induced BPH. Rats were randomly allocated into four groups, 9 rats each. The control group received olive oil subcutaneously and distilled water orally for 30 consecutive days. The second group received simvastatin (20 mg/kg, p.o.) dissolved in distilled water. The BPH-induced group received testosterone enanthate (3 mg/kg, s.c.) dissolved in olive oil, and the BPH-induced treated group received both simvastatin and testosterone. Testosterone significantly increased prostate index and severity of histopathological alterations in prostate tissues as well as 5-alpha reductase enzyme level in contrast to simvastatin treatment that reversed the testosterone-induced alterations in these parameters. Likewise, testosterone up-regulated IGF-1/PI3K/AKT signaling pathway and down-regulated FOXO transcription factor. It also decreased apoptotic markers level in prostatic tissue BAX, caspase-3, and caspase-9, while it elevated Bcl-2 level. In addition, it alleviated reduced GSH and GPX5 levels and SOD activity. Simvastatin treatment significantly opposed testosterone's effect on all aforementioned parameters. In conclusion, this study demonstrates that simvastatin is a possible treatment for BPH which may be attributed to its effect on IGF-1/PI3K/AKT/FOXO signaling pathway as well as anti-oxidant and apoptotic effects.


Asunto(s)
Hiperplasia Prostática , Simvastatina , Animales , Masculino , Ratas , Antioxidantes/efectos adversos , Factor I del Crecimiento Similar a la Insulina , Aceite de Oliva/farmacología , Aceite de Oliva/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Simvastatina/farmacología , Simvastatina/uso terapéutico , Testosterona , Agua
4.
Chem Biol Interact ; 372: 110366, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36706892

RESUMEN

Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.


Asunto(s)
Enfermedad de Parkinson , Ratas , Animales , Fosfoproteína 32 Regulada por Dopamina y AMPc/farmacología , Rotenona/toxicidad , Dopamina/metabolismo , Transducción de Señal , Fosfoproteínas
5.
Int Immunopharmacol ; 115: 109647, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584570

RESUMEN

Multiple sclerosis (MS) is a disabling neurodegenerative disease that causes demyelination and axonal degeneration of the central nervous system. Current treatments are partially effective in managing MS relapses and have a negligible impact on treating MS cognitive deficits and cannot enhance neuronal remyelination, imposing a need for a new MS remedy. Semaglutide, a novel glucagon-like peptide-1 agonist, has recently displayed a neuroprotective effect on several neurodegenerative diseases, suggesting that it may have a protective effect in MS. Therefore, this study was conducted to investigate the influence of semaglutide on experimental autoimmune encephalomyelitis (EAE)-induced MS in mice. Here, EAE was induced in mice using spinal cord homogenate, which eventually altered the mice's cognitive and motor functions, similar to what is observed in MS. Interestingly, intraperitoneally administered semaglutide (25 nmol/kg/day) amended EAE-induced cognitive and motor deficits observed in novel object recognition, open field, rotarod, and grip strength tests. Moreover, histological examination revealed that semaglutide treatment attenuated hippocampal damage and corpus callosum demyelination caused by EAE. Additionally, biochemical testing revealed that semaglutide activates the PI3K/Akt axis, which eventually hampers GSK-3ß activity. GSK-3ß activity inhibition attenuates demyelination and triggers remyelination through CREB/BDNF; furthermore, it boosts Nrf2 and SOD levels, protecting the mice from EAE-induced oxidative stress. Additionally, GSK-3ß inhibition minimizes neuroinflammation, as reflected by decreased NF-kß and TNF-α levels. In conclusion, semaglutide has a neuroprotective effect in EAE-induced MS in mice, which is mediated by activating the ramified PI3K/Akt/GSK-3ß pathway.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Péptido 1 Similar al Glucagón , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL
6.
Life Sci ; 310: 121129, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306871

RESUMEN

AIMS: Parkinson's disease (PD) is characterized by motor disabilities precipitated by α-synuclein aggregation and dopaminergic neurodegeneration. The roles of oxidative stress, neuroinflammation, dysfunction of the mitogen-activated protein kinase (MAPK) pathway, and apoptosis in dopaminergic neurodegeneration have been established. We investigated the potential neuroprotective effect of xanthotoxin, a furanocoumarin extracted from family Apiaceae, in a rotenone-induced PD model in rats since it has not yet been elucidated. MAIN METHODS: For 21 days, rats received 11 rotenone injections (1.5 mg/kg, s.c.) on the corresponding days to induce a PD model and xanthotoxin (15 mg/kg, i.p.) daily. KEY FINDINGS: Xanthotoxin preserved dopaminergic neurons and restored tyrosine hydroxylase positive cells, with suppression of α-synuclein accumulation and restoration of striatal levels of dopamine and its metabolites resulting in amelioration of motor deficits. Furthermore, xanthotoxin impeded rotenone-stimulated neurodegeneration by reducing oxidative stress, which was confirmed by malondialdehyde suppression and glutathione antioxidant enzyme augmentation. It also suppressed neurotoxic inflammatory mediators including tumor necrosis factor-α, interleukin-1ß, and inducible nitric oxide synthase. Additionally, xanthotoxin attenuated the rotenone-mediated activation of MAPK kinases, C-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinases 1/2, with consequent ablation of apoptotic mediators including Bax, cytochrome c, and caspase-3. SIGNIFICANCE: This study revealed the neuroprotective effect of xanthotoxin in a rotenone-induced PD model in rats, an action that could be attributed to its antioxidant, anti-inflammatory activities as well as to its ability to maintain the function of the MAPK signaling pathway and attenuate apoptosis. Therefore, it could be a valuable therapy for PD.


Asunto(s)
Metoxaleno , Fármacos Neuroprotectores , Enfermedad de Parkinson Secundaria , Animales , Ratas , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas , Inflamación/patología , Metoxaleno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas Wistar , Rotenona/efectos adversos , Transducción de Señal , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35690118

RESUMEN

Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.


Asunto(s)
Barrera Hematoencefálica , Encefalitis , Hipolipemiantes , Niacina , Trastornos Psicóticos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Ketamina/farmacología , Masculino , Niacina/farmacología , Niacina/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas de Uniones Estrechas/metabolismo
8.
Chem Biol Interact ; 354: 109841, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35104487

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and non-motor symptoms. Impairment of the ubiquitin proteasome system (UPS) and autophagy has been suggested to contribute to α-synuclein accumulation, which is identified as the pathological hallmark of PD. Recently, alteration in histone-3 acetylation has also been found to be correlated to PD. Interestingly, the histone deacetylase 6 (HDAC6) enzyme, which regulates the acetylation of histone-3, was shown to be involved in autophagy. Venlafaxine is an antidepressant that was proposed to inhibit HDAC expression in depressive rats' hippocampi. In this study, we aimed to examine the ability of venlafaxine to inhibit striatal HDAC6 and to enhance α-synuclein clearance through the activation of the UPS and autophagy, in addition to treating depression, which is the most debilitating non-motor symptom, in a rotenone model of PD. Venlafaxine administration was noted to decrease α-synuclein accumulation and preserve dopaminergic neurons along with restoration of striatal dopamine levels and motor recovery. Its administration augmented the UPS and autophagic markers (beclin-1, p62, and LC3) with consequent modulation of apoptotic indicators (Bax/Bcl-2 ratio, cytochrome c, and caspase-3). Additionally, venlafaxine inhibited HDAC6 with further enhancement of autophagy and restoration of histone-3 acetylation with subsequent increases in survival gene expressions (Bcl-2 and brain-derived neurotrophic factor). Chloroquine (autophagy inhibitor) was used to indicate the proposed pathway. Moreover, venlafaxine hampered depressive symptoms and improved hippocampal noradrenaline and serotonin levels. Collectively, venlafaxine is suggested to display neuroprotective effects with improvement of motor and non-motor PD symptoms.


Asunto(s)
Rotenona
9.
Front Pharmacol ; 12: 666502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366841

RESUMEN

Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and ß-amyloid (Aß1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3ß (GSK-3ß), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aß1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3ß and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.

10.
Oxid Med Cell Longev ; 2021: 5525306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306309

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Cognición/efectos de los fármacos , Fermentación/efectos de los fármacos , Estreptozocina/farmacología , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Estreptozocina/metabolismo , Proteínas tau/metabolismo
11.
Chem Biol Interact ; 331: 109276, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002459

RESUMEN

Ulcerative colitis (UC) is a chronic disease driven primarily by uncontrolled pervasive inflammatory responses affecting the colon and rectum. Currently available medications carry multiple detrimental adverse effects, which have emphasized the mandatory need for safer and more efficient novel therapeutic alternatives. Melittin is the main constituent of bee venom and exhibits potent anti-inflammatory properties. The antiulcerogenic effect of oral melittin (40 µg/kg) was explored in the current study using the acetic acid-induced colitis model. Increase in body weight and decrease in colon mass index were observed in the melittin group. Microscopically, melittin ameliorated acetic acid-induced histological damage. Melittin administration has efficiently amended the elevated levels of the cytokines, tumor necrosis factor (TNF-α) and interleukin 6 (IL-6) seen in the colitis group. This was accompanied by inhibition of the upstream signaling molecules, Toll-like receptor 4 (TLR4), tumor necrosis factor receptor (TNF-R)-associated factor (TRAF6), mitogen-activated protein kinase 38 (p38 MAPK), and nuclear factor kappaB (NF-κB) in the melittin group. Moreover, treatment with melittin resulted in marked decrease in colonic level of prostaglandin E2 (PGE2) together with the enzymes involved in its synthesis, secretory phospholipase A2 (sPLA2) and cyclooxygenase 2 (COX-2). Additionally, melittin has attenuated acetic acid-induced oxidative stress as manifested by the significant diminishment in malondialdehyde (MDA) as well as the increase in superoxide dismutase (SOD) and reduced glutathione (GSH) levels. Therefore, melittin mitigated UC pathogenesis and could be considered as a potent and promising therapeutic alternative for UC treatment.


Asunto(s)
Antiulcerosos/farmacología , Meliteno/farmacología , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Ácido Acético/toxicidad , Administración Oral , Animales , Antiulcerosos/uso terapéutico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Malondialdehído/metabolismo , Meliteno/uso terapéutico , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Clin Exp Pharmacol Physiol ; 46(12): 1141-1150, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408200

RESUMEN

Hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear receptor related-1 (Nurr1) play pivotal roles in the development and survival of dopaminergic neurons, and deficiencies in these genes may be involved in Parkinson's disease (PD) pathogenesis. Recently, anthelminthic benzimidazoles were shown to promote HIF-1α transcription in vitro and were proposed to activate Nurr1 via their benzimidazole group. Therefore, the aim of this study was to explore the neuroprotective effects of albendazole (ABZ), an anthelminthic benzimidazole, in a rotenone model of Parkinson's disease (PD). Rotenone (1.5 mg/kg) was subcutaneously injected into rats every other day for a period of 21 days, resulting in the development of the essential features of PD. In addition to rotenone, ABZ (10 mg/kg) was administered orally starting from the 11th day. Treatment of rats with ABZ markedly mitigated rotenone-induced histological alterations in substantia nigra (SN), restored striatal dopamine (DA) level and motor functions and decreased the expression of α-synuclein (a disease marker protein). ABZ also enhanced expression of Hypoxia-inducible factor-1 alpha (HIF-1α) in the SN along with its downstream target, vascular endothelial growth factor, promoting neuronal survival. Similarly, ABZ augmented nuclear receptor related-1 (Nurr1) expression in the SN and increased transcriptional activation of Nurr1-controlled genes, which are essential for regulation of DA synthesis; additionally, expression of neurotoxic proinflammatory cytokines that induce neuronal death was suppressed. In conclusion, the present study suggests that ABZ exerts a neuroprotective effect in a rotenone-induced PD model associated with HIF-1α and Nurr1 activation and thus may be a viable candidate for treating PD.


Asunto(s)
Albendazol/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neuroprotección/efectos de los fármacos , Neuroprotección/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Enfermedad de Parkinson , Albendazol/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Terapia Molecular Dirigida , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/genética , Enfermedad de Parkinson Secundaria/patología , Ratas , Ratas Wistar , Rotenona
13.
Mol Neurobiol ; 55(5): 4078-4089, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28585189

RESUMEN

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.


Asunto(s)
Dabigatrán/farmacología , Fármacos Neuroprotectores/farmacología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Enfermedad de Parkinson/metabolismo , Trombina/farmacología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Inflamación/patología , Masculino , Neostriado/metabolismo , Neostriado/patología , Enfermedad de Parkinson/patología , Ratas Wistar , Rotenona , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Neuroscience ; 332: 26-37, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27365173

RESUMEN

Amitriptyline (AMI), a commonly prescribed tricyclic antidepressant (TCA) to parkinsonian patients, specifically showed a significant delay in dopaminergic therapy initiation and improvement in motor disability in parkinsonian patients. Moreover, it was recently shown that AMI has neuroprotective properties; however, the mechanisms underlying this effect in Parkinson's disease (PD) are not fully understood. The current study aimed to investigate the possible neuroprotective mechanisms afforded by AMI in the rotenone model of PD and to assess whether another TCA member, imipramine (IMI), shows a corresponding effect. Rats were allocated into seven groups. Four groups were given either saline, dimethyl sulfoxide, AMI or IMI. Three rotenone groups were either untreated or treated with AMI or IMI. Rats receiving rotenone exhibited motor impairment in open field and rotarod tests. Additionally, immunohistochemical examination revealed dopaminergic neuronal damage in substantia nigra. Besides, striatal monoamines and brain derived neurotrophic factor levels were declined. Furthermore, oxidative stress, microglial activation and inflammation were evident in the striata. Pretreatment of rotenone groups with AMI or IMI prevented rotenone-induced neuronal degeneration and increased striatal dopamine level with motor recovery. These effects were accompanied by restoring striatal monoamines and brain-derived neurotrophic factor levels, as well as reducing oxidative damage, microglial activation and expression of proinflammatory cytokines and inducible nitric oxide synthase. The present results suggest that modulation of noradrenaline and serotonin levels, up-regulation of neurotrophin, inhibition of glial activation, anti-oxidant and anti-inflammatory activities could serve as important mechanisms underlying the neuroprotective effects of the used drugs in the rotenone model of PD.


Asunto(s)
Amitriptilina/farmacología , Antiparkinsonianos/farmacología , Imipramina/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Inmunohistoquímica , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas Wistar , Prueba de Desempeño de Rotación con Aceleración Constante , Rotenona , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA