Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochem J ; 480(9): 587-605, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37018014

RESUMEN

Innate or acquired resistance to small molecule BRAF or MEK1/2 inhibitors (BRAFi or MEKi) typically arises through mechanisms that sustain or reinstate ERK1/2 activation. This has led to the development of a range of ERK1/2 inhibitors (ERKi) that either inhibit kinase catalytic activity (catERKi) or additionally prevent the activating pT-E-pY dual phosphorylation of ERK1/2 by MEK1/2 (dual-mechanism or dmERKi). Here, we show that eight different ERKi (both catERKi or dmERKi) drive the turnover of ERK2, the most abundant ERK isoform, with little or no effect on ERK1. Thermal stability assays show that ERKi do not destabilise ERK2 (or ERK1) in vitro, suggesting that ERK2 turnover is a cellular consequence of ERKi binding. ERK2 turnover is not observed upon treatment with MEKi alone, suggesting it is ERKi binding to ERK2 that drives ERK2 turnover. However, MEKi pre-treatment, which blocks ERK2 pT-E-pY phosphorylation and dissociation from MEK1/2, prevents ERK2 turnover. ERKi treatment of cells drives the poly-ubiquitylation and proteasome-dependent turnover of ERK2 and pharmacological or genetic inhibition of Cullin-RING E3 ligases prevents this. Our results suggest that ERKi, including current clinical candidates, act as 'kinase degraders', driving the proteasome-dependent turnover of their major target, ERK2. This may be relevant to the suggestion of kinase-independent effects of ERK1/2 and the therapeutic use of ERKi.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Complejo de la Endopetidasa Proteasomal , Fosforilación , Sistema de Señalización de MAP Quinasas/fisiología , Procesamiento Proteico-Postraduccional , Ubiquitinación
2.
Oncogene ; 41(20): 2811-2823, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418690

RESUMEN

The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Fosfatasa 6 de Especificidad Dual , Fosfatasas de Especificidad Dual , Neoplasias Pancreáticas , Animales , Atrofia/patología , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/genética , Hiperplasia , Ratones , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Pérdida de Peso , Neoplasias Pancreáticas
3.
Am J Physiol Heart Circ Physiol ; 321(2): H382-H389, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142888

RESUMEN

Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.


Asunto(s)
Proliferación Celular/genética , Fosfatasas de Especificidad Dual/genética , Ventrículos Cardíacos/metabolismo , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular/genética , Angiotensina II/farmacología , Animales , Estudios de Casos y Controles , Células Cultivadas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Vasoconstrictores/farmacología
4.
Nat Commun ; 11(1): 1383, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170057

RESUMEN

The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Inflamación/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Inhibidores de Proteínas Quinasas/farmacología , Transcripción Genética
5.
Mol Cell ; 77(2): 228-240.e7, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31733992

RESUMEN

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.


Asunto(s)
Autofagia/fisiología , Proteína Quinasa CDC2/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitosis/fisiología , Células A549 , Línea Celular , Línea Celular Tumoral , Femenino , Células HCT116 , Células HEK293 , Células HT29 , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Fosforilación/fisiología , Transducción de Señal/fisiología
6.
Mol Cancer Ther ; 19(2): 525-539, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31748345

RESUMEN

The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/análisis , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Humanos , Masculino , Ratones , Ratones Desnudos , Fosforilación
7.
Biochim Biophys Acta Mol Cell Res ; 1866(1): 124-143, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401534

RESUMEN

It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , Animales , Catálisis , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Diabetes Mellitus/metabolismo , Fosfatasas de Especificidad Dual/fisiología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Neuropatología , Obesidad/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Proteínas Tirosina Fosfatasas/fisiología , Transducción de Señal/fisiología , Especificidad por Sustrato/fisiología
8.
Pharmacol Ther ; 187: 45-60, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29454854

RESUMEN

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.


Asunto(s)
Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
9.
FEBS J ; 285(1): 42-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29314599

RESUMEN

The protein kinases ERK1/2 and RSK associate in unstimulated cells but must separate to target other substrates. In this issue, Gógl et al. show that phosphorylation of RSK by active ERK1/2 culminates in the formation of an intramolecular charge clamp between Lys729 and the phosphate group on Ser732. This promotes the dissociation of ERK1/2 from RSK allowing them to engage with other targets.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Fosforilación
10.
Bioconjug Chem ; 28(6): 1677-1683, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28449575

RESUMEN

The RAS-RAF-MEK-ERK pathway has been intensively studied in oncology, with RAS known to be mutated in ∼30% of all human cancers. The recent emergence of ERK1/2 inhibitors and their ongoing clinical investigation demands a better understanding of ERK1/2 behavior following small-molecule inhibition. Although fluorescent fusion proteins and fluorescent antibodies are well-established methods of visualizing proteins, we show that ERK1/2 can be visualized via a less-invasive approach based on a two-step process using inverse electron demand Diels-Alder cycloaddition. Our previously reported trans-cyclooctene-tagged covalent ERK1/2 inhibitor was used in a series of imaging experiments following a click reaction with a tetrazine-tagged fluorescent dye. Although limitations were encountered with this approach, endogenous ERK1/2 was successfully imaged in cells, and "on-target" staining was confirmed by over-expressing DUSP5, a nuclear ERK1/2 phosphatase that anchors ERK1/2 in the nucleus.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/análisis , Sondas Moleculares/química , Línea Celular , Reacción de Cicloadición , Fosfatasas de Especificidad Dual/análisis , Colorantes Fluorescentes , Humanos , Inhibidores de Proteínas Quinasas
11.
Proc Natl Acad Sci U S A ; 114(3): E317-E326, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28053233

RESUMEN

Deregulated extracellular signal-regulated kinase (ERK) signaling drives cancer growth. Normally, ERK activity is self-limiting by the rapid inactivation of upstream kinases and delayed induction of dual-specificity MAP kinase phosphatases (MKPs/DUSPs). However, interactions between these feedback mechanisms are unclear. Here we show that, although the MKP DUSP5 both inactivates and anchors ERK in the nucleus, it paradoxically increases and prolongs cytoplasmic ERK activity. The latter effect is caused, at least in part, by the relief of ERK-mediated RAF inhibition. The importance of this spatiotemporal interaction between these distinct feedback mechanisms is illustrated by the fact that expression of oncogenic BRAFV600E, a feedback-insensitive mutant RAF kinase, reprograms DUSP5 into a cell-wide ERK inhibitor that facilitates cell proliferation and transformation. In contrast, DUSP5 deletion causes BRAFV600E-induced ERK hyperactivation and cellular senescence. Thus, feedback interactions within the ERK pathway can regulate cell proliferation and transformation, and suggest oncogene-specific roles for DUSP5 in controlling ERK signaling and cell fate.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Sistema de Señalización de MAP Quinasas , Sustitución de Aminoácidos , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Transformación Celular Neoplásica , Células Cultivadas , Citoplasma/metabolismo , Fosfatasas de Especificidad Dual/deficiencia , Fosfatasas de Especificidad Dual/genética , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Quinasas raf/metabolismo
12.
Methods Mol Biol ; 1447: 197-215, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27514808

RESUMEN

The spatiotemporal regulation of the Ras/ERK pathway is critical in determining the physiological and pathophysiological outcome of signaling. Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (DUSPs or MKPs) are key regulators of pathway activity and may also localize ERK to distinct subcellular locations. Here we present methods largely based on the use of high content microscopy to both visualize and quantitate the subcellular distribution of activated (p-ERK) and total ERK in populations of mouse embryonic fibroblasts derived from mice lacking DUSP5, a nuclear ERK-specific MKP. Such methods in combination with rescue experiments using adenoviral vectors encoding wild-type and mutant forms of DUSP5 have allowed us to visualize specific defects in ERK regulation in these cells thus confirming the role of this phosphatase as both a nuclear regulator of ERK activity and localization.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Microscopía Fluorescente/métodos , Transducción de Señal , Proteínas ras/metabolismo , Animales , Células Cultivadas , Fosfatasas de Especificidad Dual/análisis , Fosfatasas de Especificidad Dual/genética , Quinasas MAP Reguladas por Señal Extracelular/análisis , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Técnica del Anticuerpo Fluorescente/métodos , Eliminación de Gen , Células HEK293 , Humanos , Immunoblotting/métodos , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas ras/análisis
13.
Semin Cell Dev Biol ; 50: 125-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791049

RESUMEN

Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Neoplasias/enzimología
14.
Proc Natl Acad Sci U S A ; 111(51): 18267-72, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489104

RESUMEN

Ectopic expression of dual-specificity phosphatase 5 (DUSP5), an inducible mitogen-activated protein (MAP) kinase phosphatase, specifically inactivates and anchors extracellular signal-regulated kinase (ERK)1/2 in the nucleus. However, the role of endogenous DUSP5 in regulating the outcome of Ras/ERK kinase signaling under normal and pathological conditions is unknown. Here we report that mice lacking DUSP5 show a greatly increased sensitivity to mutant Harvey-Ras (HRas(Q61L))-driven papilloma formation in the 7,12-Dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) model of skin carcinogenesis. Furthermore, mouse embryo fibroblasts (MEFs) from DUSP5(-/-) mice show increased levels of nuclear phospho-ERK immediately after TPA stimulation and fail to accumulate total ERK in the nucleus compared with DUSP5(+/+) cells. Surprisingly, a microarray analysis reveals that only a small number of Ras/ERK-dependent TPA-responsive transcripts are up-regulated on deletion of DUSP5 in MEFs and mouse skin. The most up-regulated gene on DUSP5 loss encodes SerpinB2, an inhibitor of extracellular urokinase plasminogen activator and deletion of DUSP5 acts synergistically with mutant HRas(Q61L) and TPA to activate ERK-dependent SerpinB2 expression at the transcriptional level. SerpinB2 has previously been implicated as a mediator of DMBA/TPA-induced skin carcinogenesis. By analyzing DUSP5(-/-), SerpinB2(-/-) double knockout mice, we demonstrate that deletion of SerpinB2 abrogates the increased sensitivity to papilloma formation seen on DUSP5 deletion. We conclude that DUSP5 performs a key nonredundant role in regulating nuclear ERK activation, localization, and gene expression. Furthermore, our results suggest an in vivo role for DUSP5 as a tumor suppressor by modulating the oncogenic potential of activated Ras in the epidermis.


Asunto(s)
Núcleo Celular/enzimología , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes ras , Inhibidor 2 de Activador Plasminogénico/metabolismo , Neoplasias Cutáneas/prevención & control , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Fosfatasas de Especificidad Dual/genética , Ratones , Ratones Noqueados , Transducción de Señal , Acetato de Tetradecanoilforbol/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA