Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
iScience ; 26(5): 106643, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168569

RESUMEN

Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.

2.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037338

RESUMEN

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Unión Periplasmáticas , Transporte de Proteínas , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Lipoproteínas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/genética
3.
PLoS Pathog ; 17(8): e1009902, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460869

RESUMEN

The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor ß-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.


Asunto(s)
Actinas/química , Citoesqueleto/química , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Quinasas p21 Activadas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Quinasas p21 Activadas/genética
4.
mBio ; 12(3): e0065321, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126768

RESUMEN

In Escherichia coli and other Gram-negative bacteria, tripartite efflux pumps (TEPs) span the entire cell envelope and serve to remove noxious molecules from the cell. CusBCA is a TEP responsible for copper and silver detoxification in E. coli powered by the resistance-nodulation-cell division (RND) transporter, CusA. In a recent study, Moseng et al. (M. A. Moseng, M. Lyu, T. Pipatpolkai, P. Glaza, et al., mBio 12:e00452-21, 2021, https://dx.doi.org/10.1128/mBio.00452-21) obtained cryo-electron microscopy (cryo-EM) structures of CusA trimers in the presence of copper. The multiple conformations revealed suggest that the three monomers function independently within the CusA trimer, contrary to the cooperative mechanism proposed for the multidrug exporting RND transporter, AcrB. The work prompts consideration of the mechanism of this class of transporter and provides a basis to underpin further studies of TEPs important for bacterial survival.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Adaptación Psicológica , Cobre/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
5.
mBio ; 11(6)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144373

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that tightly adheres to host cells by forming "actin pedestals" beneath the bacteria, a critical step in pathogenesis. EPEC injects effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. We have recently shown that one such effector, EspG, hijacks p21-activated kinase (PAK) and sustains its activated state to drive the cytoskeletal changes necessary for attachment of the pathogen to target cells. This EspG subversion of PAK required active Rho family small GTPases in the host cell. Here we show that EPEC itself promotes the activation of Rho GTPases by recruiting Frabin, a host guanine nucleotide exchange factor (GEF) for the Rho GTPase Cdc42. Cells devoid of Frabin showed significantly lower EPEC-induced PAK activation, pedestal formation, and bacterial attachment. Frabin recruitment to sites of EPEC attachment was driven by EspG and required localized enrichment of phosphatidylinositol 4,5-bisphosphate (PIP2) and host Arf6. Our findings identify Frabin as a key target for EPEC to ensure the activation status of cellular GTPases required for actin pedestal formation.IMPORTANCE Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea in children, especially in the developing world. EPEC initiates infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, which work together to hijack host signaling pathways to drive pedestal production. Here we show how EPEC hijacks a host protein, Frabin, which creates the conditions in the cell necessary for the pathogen to manipulate a specific pathway that promotes pedestal formation. This provides new insights into this essential early stage in disease caused by EPEC.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Proteínas de Microfilamentos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
6.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 1015-1024, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021503

RESUMEN

In eukaryotes, numerous fundamental processes are controlled by the WAVE regulatory complex (WRC) that regulates cellular actin polymerization, crucial for cell motility, cell-cell adhesion and epithelial differentiation. Actin assembly is triggered by interaction of the small GTPase Rac1 with CYFIP1, a key component of the WRC. Previously known as FAM49B, CYRI-B is a protein that is highly conserved across the Eukaryota and has recently been revealed to be a key regulator of Rac1 activity. Mutation of CYRI-B or alteration of its expression therefore leads to altered actin nucleation dynamics, with impacts on lamellipodia formation, cell migration and infection by intracellular pathogens. In addition, knockdown of CYRI-B expression in cancer cell lines results in accelerated cell proliferation and invasiveness. Here, the structure of Rhincodon typus (whale shark) CYRI-B is presented, which is the first to be reported of any CYRI family member. Solved by X-ray crystallography, the structure reveals that CYRI-B comprises three distinct α-helical subdomains and is highly structurally related to a conserved domain present in CYFIP proteins. The work presented here establishes a template towards a better understanding of CYRI-B biological function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Mitocondriales/química , Animales , Cristalografía por Rayos X , Conformación Proteica en Hélice alfa , Dominios Proteicos , Tiburones
7.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978974

RESUMEN

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Dominios Proteicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Pliegue de Proteína
8.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252226

RESUMEN

The small GTPase ADP-ribosylation factor 6 (Arf6) anchors at the plasma membrane to orchestrate key functions, such as membrane trafficking and regulating cortical actin cytoskeleton rearrangement. A number of studies have identified key players that interact with Arf6 to regulate actin dynamics in diverse cell processes, yet it is still unknown whether Arf6 can directly signal to the wave regulatory complex to mediate actin assembly. By reconstituting actin dynamics on supported lipid bilayers, we found that Arf6 in co-ordination with Rac1(Ras-related C3 botulinum toxin substrate 1) can directly trigger actin polymerization by recruiting wave regulatory complex components. Interestingly, we demonstrated that Arf6 triggers actin assembly at the membrane directly without recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO (ARF nucleotide-binding site opener), which is able to activate Arf1 to enable WRC-dependent actin assembly. Furthermore, using labelled E. coli, we demonstrated that actin assembly by Arf6 also contributes towards efficient phagocytosis in THP-1 macrophages. Taken together, this study reveals a mechanism for Arf6-driven actin polymerization.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Actinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factor 6 de Ribosilación del ADP , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Biológicos , Fagocitosis/inmunología , Unión Proteica , Células THP-1
9.
mBio ; 10(4)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431554

RESUMEN

Enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are extracellular pathogens that reorganize the host cell cytoskeleton to form "actin pedestals" beneath the tightly adherent bacteria, a critical step in pathogenesis. EPEC and EHEC inject effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. One such effector, EspG, has been reported to bind and activate p21-activated kinase (PAK), a key cytoskeletal regulator, but the function of this interaction and whether it impacts pedestal assembly are unknown. Here, we demonstrate that deletion of espG significantly impairs pedestal formation and attachment by both EPEC and EHEC. This role of EspG is shown to be dependent on its interaction with PAK. Unexpectedly, EspG was able to subvert PAK only in the presence of Rho family small GTPases, which function to both concentrate PAK at the membrane and stimulate PAK activation. Our findings reveal a novel mechanism by which EspG hijacks PAK and sustains its active state to drive bacterial attachment to host cells.IMPORTANCE Enteropathogenic E. coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) remain a significant global health problem. Both EPEC and EHEC initiate infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, but how they contribute to disease is often less clear. Here, we show how one of these injected proteins, EspG, hijacks a host signaling pathway for pedestal production. This provides new insights into this essential early stage in EPEC and EHEC disease.


Asunto(s)
Actinas/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/metabolismo , GTP Fosfohidrolasas/metabolismo , Quinasas p21 Activadas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Proteínas Portadoras , Línea Celular , Citoesqueleto/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteína de Unión al GTP rac1/metabolismo
10.
Small GTPases ; 10(6): 411-418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-28524754

RESUMEN

The Arf and Rho subfamilies of small GTPases are nucleotide-dependent molecular switches that act as master regulators of vesicular trafficking and the actin cytoskeleton organization. Small GTPases control cell processes with high fidelity by acting through distinct repertoires of binding partners called effectors. While we understand a great deal about how these GTPases act individually, relatively little is known about how they cooperate, especially in the control of effectors. This review highlights how Arf GTPases collaborate with Rac1 to regulate actin cytoskeleton dynamics at the membrane via recruiting and activating the Wave Regulatory Complex (WRC), a Rho effector that underpins lamellipodia formation and macropinocytosis. This provides insight into Arf regulation of the actin cytoskeleton, while putting the spotlight on small GTPase cooperation with emerging evidence of its importance in fundamental cell biology and interactions with pathogenic bacteria.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Escherichia coli/metabolismo , Humanos , Salmonella/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
11.
Front Microbiol ; 9: 2318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310383

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2018.00950.].

12.
Proc Natl Acad Sci U S A ; 115(31): E7389-E7397, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012603

RESUMEN

In Gram-negative bacteria, outer-membrane lipoproteins are essential for maintaining cellular integrity, transporting nutrients, establishing infections, and promoting the formation of biofilms. The LolCDE ABC transporter, LolA chaperone, and LolB outer-membrane receptor form an essential system for transporting newly matured lipoproteins from the outer leaflet of the cytoplasmic membrane to the innermost leaflet of the outer membrane. Here, we present a crystal structure of LolA in complex with the periplasmic domain of LolC. The structure reveals how a solvent-exposed ß-hairpin loop (termed the "Hook") and trio of surface residues (the "Pad") of LolC are essential for recruiting LolA from the periplasm and priming it to receive lipoproteins. Experiments with purified LolCDE complex demonstrate that association with LolA is independent of nucleotide binding and hydrolysis, and homology models based on the MacB ABC transporter predict that LolA recruitment takes place at a periplasmic site located at least 50 Å from the inner membrane. Implications for the mechanism of lipoprotein extraction and transfer are discussed. The LolA-LolC structure provides atomic details on a key protein interaction within the Lol pathway and constitutes a vital step toward the complete molecular understanding of this important system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Hidrólisis , Modelos Moleculares , Proteínas de Unión Periplasmáticas/química , Mapeo de Interacción de Proteínas , Transporte de Proteínas
13.
Front Microbiol ; 9: 950, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892271

RESUMEN

The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

14.
Proc Natl Acad Sci U S A ; 114(47): 12572-12577, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109272

RESUMEN

MacB is an ABC transporter that collaborates with the MacA adaptor protein and TolC exit duct to drive efflux of antibiotics and enterotoxin STII out of the bacterial cell. Here we present the structure of ATP-bound MacB and reveal precise molecular details of its mechanism. The MacB transmembrane domain lacks a central cavity through which substrates could be passed, but instead conveys conformational changes from one side of the membrane to the other, a process we term mechanotransmission. Comparison of ATP-bound and nucleotide-free states reveals how reversible dimerization of the nucleotide binding domains drives opening and closing of the MacB periplasmic domains via concerted movements of the second transmembrane segment and major coupling helix. We propose that the assembled tripartite pump acts as a molecular bellows to propel substrates through the TolC exit duct, driven by MacB mechanotransmission. Homologs of MacB that do not form tripartite pumps, but share structural features underpinning mechanotransmission, include the LolCDE lipoprotein trafficking complex and FtsEX cell division signaling protein. The MacB architecture serves as the blueprint for understanding the structure and mechanism of an entire ABC transporter superfamily and the many diverse functions it supports.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Aggregatibacter actinomycetemcomitans/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
15.
Artículo en Inglés | MEDLINE | ID: mdl-28848711

RESUMEN

Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Islas Genómicas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Salmonella typhimurium/metabolismo , Virulencia
16.
Proc Natl Acad Sci U S A ; 114(15): 3915-3920, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348208

RESUMEN

To establish infections, Salmonella injects virulence effectors that hijack the host actin cytoskeleton and phosphoinositide signaling to drive pathogen invasion. How effectors reprogram the cytoskeleton network remains unclear. By reconstituting the activities of the Salmonella effector SopE, we recapitulated Rho GTPase-driven actin polymerization at model phospholipid membrane bilayers in cell-free extracts and identified the network of Rho-recruited cytoskeleton proteins. Knockdown of network components revealed a key role for myosin VI (MYO6) in Salmonella invasion. SopE triggered MYO6 localization to invasion foci, and SopE-mediated activation of PAK recruited MYO6 to actin-rich membranes. We show that the virulence effector SopB requires MYO6 to regulate the localization of PIP3 and PI(3)P phosphoinositides and Akt activation. SopE and SopB target MYO6 to coordinate phosphoinositide production at invasion foci, facilitating the recruitment of cytoskeleton adaptor proteins to mediate pathogen uptake.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/genética , Fosfatidilinositoles/metabolismo , Salmonella typhimurium/metabolismo , Transducción de Señal , Factores de Virulencia/metabolismo
17.
Cell Rep ; 17(3): 697-707, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732847

RESUMEN

To establish pathogenicity, bacteria must evade phagocytosis directed by remodeling of the actin cytoskeleton. We show that macrophages facilitate pathogen phagocytosis through actin polymerization mediated by the WAVE regulatory complex (WRC), small GTPases Arf and Rac1, and the Arf1 activator ARNO. To establish extracellular infections, enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli hijack the actin cytoskeleton by injecting virulence effectors into the host cell. Here, we find that the virulence effector EspG counteracts WRC-dependent phagocytosis, enabling EPEC and EHEC to remain extracellular. By reconstituting membrane-associated actin polymerization, we find that EspG disabled WRC activation through two mechanisms: EspG interaction with Arf6 blocked signaling to ARNO while EspG binding of Arf1 impeded collaboration with Rac1, thereby inhibiting WRC recruitment and activation. Investigating the mode of EspG interference revealed sites in Arf1 required for WRC activation and a mechanism facilitating pathogen evasion of innate host defenses.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/metabolismo , Fagocitosis , Factores de Virulencia/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Salmonella , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
18.
PLoS One ; 11(7): e0159154, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27403665

RESUMEN

Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.


Asunto(s)
Eritromicina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Unión Proteica , Dominios Proteicos
19.
Proc Natl Acad Sci U S A ; 112(23): E3058-66, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26016525

RESUMEN

Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Aciltransferasas/química , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido
20.
mBio ; 6(1)2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25670778

RESUMEN

UNLABELLED: To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. IMPORTANCE: To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP family in Salmonella invasion. Surprisingly, we found that Arf1 and Arf6 GAPs cooperate with their Arf GEF counterparts to facilitate cycles of Arf GTPase activation and inactivation, which direct pathogen invasion. This report illustrates that GAP proteins promote actin-dependent processes and are not necessarily restricted to negatively regulating cellular signaling. It uncovers a remarkable interplay between Arf GEFs and GAPs that is exploited by Salmonella to establish infection and expands our understanding of Arf GTPase-regulated cytoskeleton remodeling.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Familia de Multigenes , Infecciones por Salmonella/enzimología , Salmonella typhimurium/fisiología , Citoesqueleto/enzimología , Citoesqueleto/microbiología , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Patógeno , Humanos , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA