Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell Rep ; 43(6): 114304, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843396

RESUMEN

High TRABD expression is associated with tau pathology in patients with Alzheimer's disease; however, the function of TRABD is unknown. Human TRABD encodes a mitochondrial outer-membrane protein. The loss of TRABD resulted in mitochondrial fragmentation, and TRABD overexpression led to mitochondrial clustering and fusion. The C-terminal tail of the TRABD anchored to the mitochondrial outer membrane and the TraB domain could form homocomplexes. Additionally, TRABD forms complexes with MFN2, MIGA2, and PLD6 to facilitate mitochondrial fusion. Flies lacking dTRABD are viable and have normal lifespans. However, aging flies exhibit reduced climbing ability and abnormal mitochondrial morphology in their muscles. The expression of dTRABD is increased in aged flies. dTRABD overexpression leads to neurodegeneration and enhances tau toxicity in fly eyes. The overexpression of dTRABD also increased reactive oxygen species (ROS), ATP production, and protein turnover in the mitochondria. This study suggested that TRABD-induced mitochondrial malfunctions contribute to age-related neurodegeneration.

2.
World J Hepatol ; 16(5): 809-821, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818287

RESUMEN

BACKGROUND: Acute-on-chronic liver disease (AoCLD) accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases. AIM: To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD. METHODS: Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure (ACLF) study cohort were included in this study. The clinical characteristics and outcomes, and the 90-d survival rate associated with each clinical type of AoCLD were analyzed, using the Kaplan-Meier method and the log-rank test. RESULTS: A total of 3375 patients with AoCLD were enrolled, including 1679 (49.7%) patients with liver cirrhosis acute decompensation (LC-AD), 850 (25.2%) patients with ACLF, 577 (17.1%) patients with chronic hepatitis acute exacerbation (CHAE), and 269 (8.0%) patients with liver cirrhosis active phase (LC-A). The most common cause of chronic liver disease (CLD) was HBV infection (71.4%). The most common precipitants of AoCLD was bacterial infection (22.8%). The 90-d mortality rates of each clinical subtype of AoCLD were 43.4% (232/535) for type-C ACLF, 36.0% (36/100) for type-B ACLF, 27.0% (58/215) for type-A ACLF, 9.0% (151/1679) for LC-AD, 3.0% (8/269) for LC-A, and 1.2% (7/577) for CHAE. CONCLUSION: HBV infection is the main cause of CLD, and bacterial infection is the main precipitant of AoCLD. The most common clinical type of AoCLD is LC-AD. Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF.

3.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731658

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.

4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203794

RESUMEN

Stabilization of a G-quadruplex (G4) in the promotor of the c-MYC proto-oncogene leads to inhibition of gene expression, and it thus represents a potentially attractive new strategy for cancer treatment. However, most G4 stabilizers show little selectivity among the many G4s present in the cellular complement of DNA and RNA. Intriguingly, a crescent-shaped cell-penetrating thiazole peptide, TH3, preferentially stabilizes the c-MYC G4 over other promotor G4s, but the mechanisms leading to this selective binding remain obscure. To investigate these mechanisms at the atomic level, we performed an in silico comparative investigation of the binding of TH3 and its analogue TH1 to the G4s from the promotors of c-MYC, c-KIT1, c-KIT2, and BCL2. Molecular docking and molecular dynamics simulations, combined with in-depth analyses of non-covalent interactions and bulk and per-nucleotide binding free energies, revealed that both TH3 and TH1 can induce the formation of a sandwich-like framework through stacking with both the top and bottom G-tetrads of the c-MYC G4 and the adjacent terminal capping nucleotides. This framework produces enhanced binding affinities for c-MYC G4 relative to other promotor G4s, with TH3 exhibiting an outstanding binding priority. Van der Waals interactions were identified to be the key factor in complex formation in all cases. Collectively, our findings fully agree with available experimental data. Therefore, the identified mechanisms leading to specific binding of TH3 towards c-MYC G4 provide valuable information to guide the development of new selective G4 stabilizers.


Asunto(s)
Genes myc , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Tiazoles/farmacología
5.
Clin Exp Pharmacol Physiol ; 51(1): 3-9, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37840030

RESUMEN

Children, as a special group, have their own peculiarities in terms of individualized medication use compared to adults. Adverse drug reactions have been an important issue that needs to be addressed in the hope of safe medication use in children, and the occurrence of adverse drug reactions is partly due to genetic factors. Anti-infective drugs are widely used in children, and they have always been an important cause of the occurrence of adverse reactions in children. Pharmacogenomic technologies are becoming increasingly sophisticated, and there are now many guidelines describing the pharmacogenomics of anti-infective drugs. However, data from paediatric-based studies are scarce. This review provides a systematic review of the pharmacogenomics of anti-infective drugs recommended for gene-guided use in CPIC guidelines by exploring the relationship between pharmacogenetic frequencies and the incidence of adverse reactions, which will help inform future studies of individualized medication use in children.


Asunto(s)
Antiinfecciosos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Adulto , Humanos , Niño , Farmacogenética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Antiinfecciosos/efectos adversos
7.
Autophagy ; 19(10): 2682-2701, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37289040

RESUMEN

Inter-organelle contacts enable crosstalk among organelles, facilitating the exchange of materials and coordination of cellular events. In this study, we demonstrated that, upon starvation, autolysosomes recruit Pi4KIIα (Phosphatidylinositol 4-kinase II α) to generate phosphatidylinositol-4-phosphate (PtdIns4P) on their surface and establish endoplasmic reticulum (ER)-autolysosome contacts through PtdIns4P binding proteins Osbp (Oxysterol binding protein) and cert (ceramide transfer protein). We found that the Sac1 (Sac1 phosphatase), Osbp, and cert proteins are required for the reduction of PtdIns4P on autolysosomes. Loss of any of these proteins leads to defective macroautophagy/autophagy and neurodegeneration. Osbp, cert, and Sac1 are required for ER-Golgi contacts in fed cells. Our data establishes a new mode of organelle contact formation - the ER-Golgi contact machinery can be reused by ER-autolysosome contacts by re-locating PtdIns4P from the Golgi apparatus to autolysosomes when faced with starvation.Abbreviations: Atg1: Autophagy-related 1; Atg8: Autophagy-related 8; Atg9: Autophagy-related 9; Atg12: Autophagy-related 12; cert: ceramide transfer protein; Cp1/CathL: cysteine proteinase-1; CTL: control; ER: endoplasmic reticulum; ERMCS: ER-mitochondria contact site; fwd: four wheel drive; GM130: Golgi matrix protein 130 kD; Osbp: Oxysterol binding protein; PG: phagophore; PtdIns4K: phosphatidylinositol 4-kinase; Pi4KIIα: Phosphatidylinositol 4-kinase II α; Pi4KIIIα: Phosphatidylinositol 4-kinase III α; PtdIns4P: phosphatidylinositol-4-phosphate; PR: photoreceptor cell; RT: room temperature; Sac1: Sac1 phosphatase; Stv: starvation; Syx17: Syntaxin 17; TEM: transmission electron microscopy; VAP: VAMP-associated protein.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Autofagia , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Proteínas Portadoras/metabolismo , Homeostasis , Ceramidas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
8.
PLoS One ; 17(12): e0278489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36538528

RESUMEN

BACKGROUND: Studies suggested that the association between depression and diabetic nephropathy may be bi-directional, but this hypothesis remains investigating. In this meta-analysis, the bi-directional relationship between depression and diabetic nephropathy was investigated. METHODS: A search for the publications on depression and diabetic nephropathy in the databases of PubMed, Web of science, and Embase from the earliest available to August 2022 was conducted. Two sets of pooled risk estimates were calculated using random effects models: diabetic nephropathy predicting depression and depression predicting diabetic nephropathy. Cross-sectional studies were assessed using Agency for Healthcare Research and Quality (AHRQ), cohort and case-control studies were assessed using Newcastle-Ottawa Scale (NOS). RESULT: Of the 974,121 patients in 30 clinical studies, 24 studies met eligibility for diabetic nephropathy predicting onset of depression, representing 28,438 incident cases. The other 6 studies met criteria for depression predicting onset of diabetic nephropathy, representing 945,683 incident cases. The pooled odds ratio (OR) of diabetic nephropathy predicting depression was 1.46 (95% CI 1.27-1.67). The OR of depression predicting diabetic nephropathy was 1.22 (95% CI 1.13-1.31). CONCLUSION: This meta-analysis shows that the relationship between depression and diabetic nephropathy may be bidirectional. Diabetic nephropathy may be a predictor of depression, and depression may also be an indicator of diabetic nephropathy. The mechanisms underlying the bidirectional relationship need to be further investigated and interventions of the comorbidity of depression and diabetic nephropathy need be studied in clinical practice.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/epidemiología , Depresión/complicaciones , Estudios Transversales , Comorbilidad , Oportunidad Relativa , Diabetes Mellitus/epidemiología
9.
Int J Biol Macromol ; 223(Pt A): 1308-1319, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36395935

RESUMEN

In this study, the immunity-enhancing effect of ginger polysaccharides UGP1 and UGP2 on CTX-induced immunosuppressed mice was evaluated. The results showed that ginger polysaccharide could effectively alleviate the symptoms of weight loss and dietary intake reduction induced by CTX, increase fecal water content, reduce fecal pH, and protect immune organs of immunosuppressed mice. In addition, ginger polysaccharides also stimulated the secretion of cytokines IL-2, IL-4, TNF-α and immunoglobulin Ig-G in the serum of mice, increased the expression of Occludin and Claudin-1, and restored the level of short-chain fatty acids in the intestine to improve immune deficiency. Furthermore, ginger polysaccharides significantly reduced the relative abundance ratio of the Firmicutes and Bacteroidetes in mice and increased the relative abundance of Verrucomicrobia and Bacteroidetes at the phylum level. At the family level, ginger polysaccharides increased the relative abundance of beneficial bacteria such as Muribaculaceae, Bacteroidaceae and Lactobacillaceae, and decreased the relative abundance of harmful bacteria such as Rikenellaceae and Lachnospiraceae. Spearman correlation analysis indicated that ginger polysaccharides could enhance intestinal immunity by modulating gut microbiota associated with immune function. These results indicated that ginger polysaccharides have the potential to be a functional food ingredients or a natural medicine for the treatment of intestinal barrier injury.


Asunto(s)
Microbioma Gastrointestinal , Zingiber officinale , Ratones , Animales , Intestinos , Polisacáridos/química , Ácidos Grasos Volátiles/metabolismo , Ciclofosfamida/efectos adversos , Bacteroidetes/metabolismo
10.
Cell Rep ; 41(5): 111583, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323251

RESUMEN

Mitochondrial malfunction and autophagy defects are often concurrent phenomena associated with neurodegeneration. We show that Miga, a mitochondrial outer-membrane protein that regulates endoplasmic reticulum-mitochondrial contact sites (ERMCSs), is required for autophagy. Loss of Miga results in an accumulation of autophagy markers and substrates, whereas PI3P and Syx17 levels are reduced. Further experiments indicated that the fusion between autophagosomes and lysosomes is defective in Miga mutants. Miga binds to Atg14 and Uvrag; concordantly, Miga overexpression results in Atg14 and Uvrag recruitment to mitochondria. The heightened PI3K activity induced by Miga requires Uvrag, whereas Miga-mediated stabilization of Syx17 is dependent on Atg14. Miga-regulated ERMCSs are critical for PI3P formation but are not essential for the stabilization of Syx17. In summary, we identify a mitochondrial protein that regulates autophagy by recruiting two alternative components of the PI3K complex present at the ERMCSs.


Asunto(s)
Autofagia , Proteínas Mitocondriales , Proteínas Mitocondriales/metabolismo , Autofagia/fisiología , Lisosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Sci China Life Sci ; 65(12): 2354-2454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36066811

RESUMEN

Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Neoplasias/genética
12.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269498

RESUMEN

Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-ß signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Telomerasa , Senescencia Celular , Humanos , SARS-CoV-2 , Células Madre/metabolismo , Telomerasa/metabolismo
13.
Front Microbiol ; 13: 796167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197948

RESUMEN

Apple ring rot caused by Botryosphaeria dothidea is prevalent in main apple-producing areas in China, bringing substantial economic losses to the growers. In the present study, we demonstrated the inhibitory effect of dimethyl trisulfide (DT), one of the main activity components identified in Chinese leek (Allium tuberosum) volatile, on the apple ring rot on postharvest fruits. In in vitro experiment, 250 µL/L DT completely suppressed the mycelia growth of B. dothidea. In in vivo experiment, 15.63 µL/L DT showed 97% inhibition against the apple ring rot on postharvest fruit. In addition, the soluble sugar content, vitamin C content, and the soluble sugar/titratable acidity ratio of the DT-treated fruit were significantly higher than those of the control fruit. On this basis, we further explored the preliminary underlying mechanism. Microscopic observation revealed that DT seriously disrupted the normal morphology of B. dothidea. qRT-PCR determination showed the defense-related genes in DT-treated fruit were higher than those in the control fruit by 4.13-296.50 times, which showed that DT inhibited apple ring rot on postharvest fruit by suppressing the growth of B. dothidea, and inducing the defense-related genes in apple fruit. The findings of this study provided an efficient, safe, and environment-friendly alternative to control the apple ring rot on apple fruit.

14.
Biophys Rep ; 8(4): 225-238, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37288004

RESUMEN

Telomere DNA assumes a high-order G-quadruplex (G4) structure, stabilization of which prevents telomere lengthening by telomerase in cancer. Through applying combined molecular simulation methods, an investigation on the selective binding mechanism of anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) and human hybrid (3 + 1) G4s was firstly performed at the atomic level. Compared to the groove binding mode of APC and the hybrid type I (hybrid-I) telomere G4, APC preferred to bind to the hybrid type II (hybrid-II) telomere G4 via end-stacking interactions, which showed much more favorable binding free energies. Analyses of the non-covalent interaction and binding free energy decomposition revealed a decisive role of van der Waals interaction in the binding of APC and telomere hybrid G4s. And the binding of APC and hybrid-II G4 that showed the highest binding affinity adopted the end-stacking binding mode to form the most extensive van der Waals interactions. These findings add new knowledge to the design of selective stabilizers targeting telomere G4 in cancer.

15.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831112

RESUMEN

Pulmonary premature ageing and fibrogenesis as in idiopathic pulmonary fibrosis (IPF) occur with the DNA damage response in lungs deficient of telomerase. The molecular mechanism mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that naturally occurring ageing is associated with the DNA damage response (DDR) and activation of the p53 signalling pathway. Telomerase deficiency induced by telomerase RNA component (TERC) knockout (KO) accelerates not only replicative senescence but also altered differentiation and apoptosis of the pulmonary alveolar stem cells (AEC2) in association with increased innate immune natural killer (NK) cells in TERC KO mice. TERC KO results in increased senescence-associated heterochromatin foci (SAHF) marker HP1γ, p21, p16, and apoptosis-associated cleaved caspase-3 in AEC2. However, additional deficiency of the tumour suppressor p53 in the Trp53-/- allele of the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of T1α (a marker of terminal differentiated AEC1) in AEC2 of the late generation of TERC KO mice. These findings demonstrate that, in natural ageing or premature ageing accelerated by telomere shortening, pulmonary senescence and IPF develop with alveolar stem cell p53-dependent premature replicative senescence, apoptosis, and p53-independent differentiation, resulting in pulmonary senescence-associated low-grade inflammation (SALI). Our studies indicate a natural ageing-associated molecular mechanism of telomerase deficiency-induced telomere DDR and SALI in pulmonary ageing and IPF.


Asunto(s)
Células Epiteliales Alveolares/patología , Apoptosis , Diferenciación Celular , Senescencia Celular , Telomerasa/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento/patología , Animales , Caspasa 3/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidades de Proteína/metabolismo , ARN/metabolismo , Transducción de Señal , Células Madre/metabolismo , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/deficiencia
16.
Cell Rep ; 36(9): 109541, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469730

RESUMEN

The regulation of lipid homeostasis is not well understood. Using forward genetic screening, we demonstrate that the loss of dTBC1D22, an essential gene that encodes a Tre2-Bub2-Cdc16 (TBC) domain-containing protein, results in lipid droplet accumulation in multiple tissues. We observe that dTBC1D22 interacts with Rab40 and exhibits GTPase activating protein (GAP) activity. Overexpression of either the GTP- or GDP-binding-mimic form of Rab40 results in lipid droplet accumulation. We observe that Rab40 mutant flies are defective in lipid mobilization. The lipid depletion induced by overexpression of Brummer, a triglyceride lipase, is dependent on Rab40. Rab40 mutant flies exhibit decreased lipophagy and small size of autolysosomal structures, which may be due to the defective Golgi functions. Finally, we demonstrate that Rab40 physically interacts with Lamp1, and Rab40 is required for the distribution of Lamp1 during starvation. We propose that dTBC1D22 functions as a GAP for Rab40 to regulate lipophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Metabolismo de los Lípidos , Proteínas de Unión al GTP rab/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Ojo/ultraestructura , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Células HeLa , Homeostasis , Humanos , Lipasa/genética , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/ultraestructura , Mutación , Proteínas de Unión al GTP rab/genética
17.
STAR Protoc ; 2(3): 100620, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34195674

RESUMEN

Telomere dysfunction-induced focus (TIF) assay allows efficient profiling of telomere dysfunctions in cells and tissues. Here, we describe the use of the TIF assay to screen synthetic peptides from E3 ubiquitin ligase FBW7, a tumor suppressor gene product, to prevent TIFs caused by environmental radiation stress. We demonstrate peptidomimetic telomere dysfunction inhibitor as a potentially intervening therapeutic drug candidate in aging-related diseases. This work demonstrates a novel utility of the TIF assay protocol in identifying telomere dysfunction inhibitors. For complete details on the use and execution of this protocol, please refer to Wang et al (2020).


Asunto(s)
Peptidomiméticos , Telómero/efectos de los fármacos , Células Cultivadas , Humanos
18.
Clin Exp Pharmacol Physiol ; 48(9): 1185-1202, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34046925

RESUMEN

Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.


Asunto(s)
Células Madre Neoplásicas
19.
Food Funct ; 12(11): 5087-5095, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960991

RESUMEN

Polysaccharides have hypoglycemic activity and pea protein has high nutritional value. The purified pea glycoprotein PGP2 has been shown to inhibit the activity of α-glucosidase and α-amylase in previous studies. To study the mechanism of PGP2-induced blood glucose lowering in vivo, this paper established a diabetic mouse model by intraperitoneal injection of STZ and high-fat diet, and evaluated the blood-glucose-lowering activity of the pea component PGP2 at different doses. The results showed that intragastric administration of PGP2 could effectively reduce diabetic weight loss and polyphagia symptoms, reduce fasting blood glucose levels in mice, and improve oral glucose tolerance levels in mice. PGP2 could promote insulin secretion and had a protective effect on mouse organs. After intragastric administration of PGP2 in mice, the serum levels of total cholesterol, triglycerides and low-density lipoprotein decreased. PGP2 up-regulated the gene expression of insulin receptor substrates IRS-1 and IRS-2 in liver tissues, thereby reducing insulin resistance. Based on the above experimental results, PGP2 had good hypoglycemic activity and was expected to be developed as a natural medicine for the treatment of type II diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/farmacología , Hipoglucemiantes/farmacología , Pisum sativum/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Glicoproteínas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Triglicéridos/sangre , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
20.
Cells ; 10(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915984

RESUMEN

Telomere shortening results in cellular senescence and the regulatory mechanisms remain unclear. Here, we report that the sub-telomere regions facilitate telomere lengthening by homologous recombination, thereby attenuating senescence in yeast Saccharomyces cerevisiae. The telomere protein complex Sir3/4 represses, whereas Rif1 promotes, the sub-telomere Y' element recombination. Genetic disruption of SIR4 increases Y' element abundance and rescues telomere-shortening-induced senescence in a Rad51-dependent manner, indicating a sub-telomere regulatory switch in regulating organismal senescence by DNA recombination. Inhibition of the sub-telomere recombination requires Sir4 binding to perinuclear protein Mps3 for telomere perinuclear localization and transcriptional repression of the telomeric repeat-containing RNA TERRA. Furthermore, Sir4 repression of Y' element recombination is negatively regulated by Rif1 that mediates senescence-evasion induced by Sir4 deficiency. Thus, our results demonstrate a dual opposing control mechanism of sub-telomeric Y' element recombination by Sir3/4 and Rif1 in the regulation of telomere shortening and cell senescence.


Asunto(s)
Senescencia Celular , Recombinación Genética/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Eliminación de Gen , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Homeostasis del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA