Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
2.
Nanomaterials (Basel) ; 8(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231566

RESUMEN

The surface chemistry and the morphology of SnO2 nanowires of average length and diameter of several µm and around 100 nm, respectively, deposited by vapor phase deposition (VPD) method on Au-covered Si substrate, were studied before and after subsequent air exposure. For this purpose, surface-sensitive methods, including X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and the scanning electron microscopy (SEM), were applied. The studies presented within this paper allowed to determine their surface non-stoichiometry combined with the presence of carbon contaminations, in a good correlation with their surface morphology. The relative concentrations of the main components [O]/[Sn]; [C]/[Sn]; [Au]/[Sn], together with the O⁻Sn; O⁻Si bonds, were analyzed. The results of TDS remained in a good agreement with the observations from XPS. Moreover, conclusions obtained for SnO2 nanowires deposited with the use of Au catalyst were compared to the previous obtained for Ag-assisted tin dioxide nanowires. The information obtained within these studies is of a great importance for the potential application of SnO2 nanowires in the field of novel chemical nanosensor devices, since the results can provide an interpretation of how aging effects influence gas sensor dynamic characteristics.

3.
Materials (Basel) ; 11(1)2018 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-29342888

RESUMEN

In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O2 flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O2 flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O2 ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.

4.
Beilstein J Nanotechnol ; 8: 108-122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28144570

RESUMEN

The aim of this research is to study the role of nanocrystalline TiO2/SnO2 n-n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H2 concentrations of 1-3000 ppm at 200-400 °C. The nanomaterials are well-crystallized, anatase TiO2, rutile TiO2 and cassiterite SnO2 polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3-27 nm. Tin exhibits only the oxidation state 4+. The H2 detection threshold for the studied TiO2/SnO2 heterostructures is lower than 1 ppm especially in the case of SnO2-rich samples. The recovery time of SnO2-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO2-rich samples at higher H2 flows. TiO2/SnO2 heterostructures can be intentionally modified for the improved H2 detection within both the small (1-50 ppm) and the large (50-3000 ppm) concentration range. The temperature Tmax at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO2/SnO2 composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H2 partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA