Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762320

RESUMEN

The dense alignment surface (DAS) transmembrane (TM) prediction method was first published more than 25 years ago. DAS was the one of the earliest tools to discriminate TM proteins from globular ones and to predict the sequence positions of TM helices in proteins with high accuracy from their amino acid sequence alone. The algorithmic improvements that followed in 2002 (DAS-TMfilter) made it one of the best performing tools among those relying on local sequence information for TM prediction. Since then, many more experimental data about membrane proteins (including thousands of 3D structures of membrane proteins) have accumulated but there has been no significant improvement concerning performance in the area of TM helix prediction tools. Here, we report a new implementation of the DAS-TMfilter prediction web server. We reevaluated the performance of the method using a five-times-larger, updated test dataset. We found that the method performs at essentially the same accuracy as the original even without any change to the parametrization of the program despite the much larger dataset. Thus, the approach captures the physico-chemistry of TM helices well, essentially solving this scientific problem.


Asunto(s)
Algoritmos , Proteínas de la Membrana , Estructura Secundaria de Proteína , Proteínas de la Membrana/química , Secuencia de Aminoácidos
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675304

RESUMEN

Mutual synergistic folding (MSF) proteins belong to a recently emerged subclass of disordered proteins, which are disordered in their monomeric forms but become ordered in their oligomeric forms. They can be identified by experimental methods following their unfolding, which happens in a single-step cooperative process, without the presence of stable monomeric intermediates. Only a limited number of experimentally validated MSF proteins are accessible. The amino acid composition of MSF proteins shows high similarity to globular ordered proteins, rather than to disordered ones. However, they have some special structural features, which makes it possible to distinguish them from globular proteins. Even in the possession of their oligomeric three-dimensional structure, classification can only be performed based on unfolding experiments, which are frequently absent. In this work, we demonstrate a simple protocol using molecular dynamics simulations, which is able to indicate that a protein structure belongs to the MSF subclass. The presumption of the known atomic resolution quaternary structure is an obvious limitation of the method, and because of its high computational time requirements, it is not suitable for screening large databases; still, it is a valuable in silico tool for identification of MSF proteins.


Asunto(s)
Simulación de Dinámica Molecular , Pliegue de Proteína , Proteínas/química
4.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409045

RESUMEN

Recent decades have brought significant changes to the protein structure research field [...].


Asunto(s)
Proteínas
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948202

RESUMEN

Mutual Synergetic Folding (MSF) proteins belong to a recently discovered class of proteins. These proteins are disordered in their monomeric but ordered in their oligomeric forms. Their amino acid composition is more similar to globular proteins than to disordered ones. Our preceding work shed light on important structural aspects of the structural organization of these proteins, but the background of this behavior is still unknown. We suggest that solvent accessibility is an important factor, especially solvent accessibility of the peptide bonds can be accounted for this phenomenon. The side chains of the amino acids which form a peptide bond have a high local contribution to the shielding of the peptide bond from the solvent. During the oligomerization step, other non-local residues contribute to the shielding. We investigated these local and non-local effects of shielding based on Shannon information entropy calculations. We found that MSF and globular homodimeric proteins have different local contributions resulting from different amino acid pair frequencies. Their non-local distribution is also different because of distinctive inter-subunit contacts.


Asunto(s)
Péptidos/química , Proteínas/química , Solventes/química , Aminoácidos/química , Entropía , Pliegue de Proteína
6.
Biochem Pharmacol ; 182: 114250, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991865

RESUMEN

Organic anion-transporting polypeptide 3A1 (OATP3A1) is a membrane transporter mediating the cellular uptake of various hormones such as estrone-3-sulfate, prostaglandins E1 and E2 and thyroxine. OATP3A1 is widely expressed in the human body and its presence in tissue-blood barriers, neurons and muscle cells marks it as a potential pharmacological target. Herein we demonstrate that an otherwise membrane impermeant, zwitterionic fluorescent coumarin probe, bearing a sulfonate function is a potent substrate of human OATP3A1, thus readily transported into HEK-293-OATP3A1 cells allowing functional investigation and the screen of drug interactions of the OATP3A1 transporter. At the same time, dyes lacking either the sulfonate motif or the coumarin scaffold showed a dramatic decrease in affinity or even a complete loss of transport. Furthermore, we observed a distinct inhibition/activation pattern in the OATP3A1-mediated uptake of closely related fluorescent coumarin derivatives differing only in the presence of the sulfonate moiety. Additionally, we detected a synergistic effect between one of the probes tested and the endogenous OATP substrate estrone-3-sulfate. These data, together with docking results indicate the presence of at least two cooperative substrate binding sites in OATP3A1. Besides providing the first sensitive probe for testing OATP3A1 substrate/inhibitor interactions, our results also help to understand substrate recognition and transport mechanism of the poorly characterized OATP3A1. Moreover, coumarins are good candidates for OATP3A1-targeted drug delivery and as pharmacological modulators of OATP3A1.


Asunto(s)
Cumarinas/metabolismo , Cumarinas/farmacología , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Transportadores de Anión Orgánico/metabolismo , Cumarinas/química , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Transportadores de Anión Orgánico/química , Estructura Secundaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
7.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623284

RESUMEN

Several intrinsically disordered proteins (IDPs) are capable to adopt stable structures without interacting with a folded partner. When the folding of all interacting partners happens at the same time, coupled with the interaction in a synergistic manner, the process is called Mutual Synergistic Folding (MSF). These complexes represent a discrete subset of IDPs. Recently, we collected information on their complexes and created the MFIB (Mutual Folding Induced by Binding) database. In a previous study, we compared homodimeric MSF complexes with homodimeric and monomeric globular proteins with similar amino acid sequence lengths. We concluded that MSF homodimers, compared to globular homodimeric proteins, have a greater solvent accessible main-chain surface area on the contact surface of the subunits, which becomes buried during dimerization. The main driving force of the folding is the mutual shielding of the water-accessible backbones, but the formation of further intermolecular interactions can also be relevant. In this paper, we will report analyses of heterodimeric MSF complexes. Our results indicate that the amino acid composition of the heterodimeric MSF monomer subunits slightly diverges from globular monomer proteins, while after dimerization, the amino acid composition of the overall MSF complexes becomes more similar to overall amino acid compositions of globular complexes. We found that inter-subunit interactions are strengthened, and additionally to the shielding of the solvent accessible backbone, other factors might play an important role in the stabilization of the heterodimeric structures, likewise energy gain resulting from the interaction of the two subunits with different amino acid compositions. We suggest that the shielding of the ß-sheet backbones and the formation of a buried structural core along with the general strengthening of inter-subunit interactions together could be the driving forces of MSF protein structural ordering upon dimerization.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Multimerización de Proteína , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
8.
J Cheminform ; 11(1): 67, 2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33430961

RESUMEN

Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similarities were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteristic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, previously unknown chemotypes possessing in vitro Top2 inhibitory activity.

9.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373142

RESUMEN

Intrinsically disordered proteins (IDPs) lack a well-defined 3D structure. Their disordered nature enables them to interact with several other proteins and to fulfil their vital biological roles, in most cases after coupled folding and binding. In this paper, we analyze IDPs involved in a new mechanism, mutual synergistic folding (MSF). These proteins define a new subset of IDPs. Recently we collected information on these complexes and created the Mutual Folding Induced by Binding (MFIB) database. These protein complexes exhibit considerable structural variation, and almost half of them are homodimers, but there is a significant amount of heterodimers and various kinds of oligomers. In order to understand the basic background of the disordered character of the monomers found in MSF complexes, the simplest part of the MFIB database, the homodimers are analyzed here. We conclude that MFIB homodimeric proteins have a larger solvent-accessible main-chain surface area on the contact surface of the subunits, when compared to globular homodimeric proteins. The main driving force of the dimerization is the mutual shielding of the water-accessible backbones and the formation of extra intermolecular interactions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Animales , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Agua/química
10.
Mol Divers ; 21(1): 175-186, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28070724

RESUMEN

A glutaminyl cyclase (QC) fragment library was in silico selected by disconnection of the structure of known QC inhibitors and by lead-like 2D virtual screening of the same set. The resulting fragment library (204 compounds) was acquired from commercial suppliers and pre-screened by differential scanning fluorimetry followed by functional in vitro assays. In this way, 10 fragment hits were identified ([Formula: see text]5 % hit rate, best inhibitory activity: 16 [Formula: see text]). The in vitro hits were then docked to the active site of QC, and the best scoring compounds were analyzed for binding interactions. Two fragments bound to different regions in a complementary manner, and thus, linking those fragments offered a rational strategy to generate novel QC inhibitors. Based on the structure of the virtual linked fragment, a 77-membered QC target focused library was selected from vendor databases and docked to the active site of QC. A PubChem search confirmed that the best scoring analogues are novel, potential QC inhibitors.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Simulación por Computador , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Dominio Catalítico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
11.
Biochem Biophys Res Commun ; 471(1): 57-62, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26845354

RESUMEN

The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilization of proteins.


Asunto(s)
Aminoácidos/química , Calor , Modelos Químicos , Estabilidad Proteica , Proteínas/química , Proteínas/ultraestructura , Secuencia de Aminoácidos , Simulación por Computador , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Termodinámica , Temperatura de Transición
12.
PLoS One ; 11(1): e0146066, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26727491

RESUMEN

Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics.


Asunto(s)
Receptores de Hidrocarburo de Aril/química , Xenobióticos/metabolismo , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Sitios de Unión , Proteínas CLOCK/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Químicos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Complejos Multiproteicos , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Receptores de Hidrocarburo de Aril/metabolismo , Especificidad por Sustrato
13.
Chem Biol Drug Des ; 86(4): 864-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25823681

RESUMEN

Rapid in silico selection of target-focused libraries from commercial repositories is an attractive and cost-effective approach. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compound databases, but the generated library requires further focusing. We report here a combination of the 2D approach with pharmacophore matching which was used for selecting 5-HT6 antagonists. In the first screening round, 12 compounds showed >85% antagonist efficacy of the 91 screened. For the second-round (hit validation) screening phase, pharmacophore models were built, applied, and compared with the routine 2D similarity search. Three pharmacophore models were created based on the structure of the reference compounds and the first-round hit compounds. The pharmacophore search resulted in a high hit rate (40%) and led to novel chemotypes, while 2D similarity search had slightly better hit rate (51%), but lacking the novelty. To demonstrate the power of the virtual screening cascade, ligand efficiency indices were also calculated and their steady improvement was confirmed.


Asunto(s)
Descubrimiento de Drogas , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Modelos Moleculares
14.
Curr Drug Discov Technol ; 11(3): 227-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25138914

RESUMEN

Therapeutics designed to increase synaptic neurotransmitter levels by inhibiting neurotransmitter sodium symporters (NSSs) classify a strategic approach to treat brain disorders such as depression or epilepsy, however, the critical elementary steps that couple downhill flux of sodium to uphill transport of neurotransmitter are not distinguished as yet. Here we present modelling of NSS member neuronal GAT1 with the substrate γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter. GABA binding is simulated with the occluded conformation of GAT1 homodimer in an explicit lipid/water environment. Simulations performed in the 1-10 ns range of time elucidated persistent formation of halfextended minor and H-bridged major GABA conformations, referred to as binding and traverse conformations, respectively. The traverse GABA conformation was further stabilized by GAT1-bound Na(+)(1). We also observed Na(+)(1) translocation to GAT1-bound Cl(-) as well as the appearance of water molecules at GABA and GAT1-bound Na(+)(2), conjecturing causality. Scaling dynamics suggest that the traverse GABA conformation may be valid for developing substrate inhibitors with high efficacy. The potential for this finding is significant with impact not only in pharmacology but wherever understanding of the mechanism of neurotransmitter uptake is valuable.


Asunto(s)
Proteínas de Transporte de Membrana/química , Modelos Moleculares , Neurotransmisores/química , Neurotransmisores/metabolismo , Sodio/química , Simportadores/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Sodio/metabolismo , Especificidad por Sustrato/fisiología , Simportadores/metabolismo
15.
Molecules ; 19(6): 7008-39, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24879613

RESUMEN

Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D) which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM) to 28.5% (2nd round at 50% inhibition at 10 µM) and the best two hits had 53 nM inhibitory activities.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa 5 , Evaluación Preclínica de Medicamentos , Estructura Molecular , Relación Estructura-Actividad
16.
J Chem Inf Model ; 47(6): 2366-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17944457

RESUMEN

Structure-based virtual screens were carried out against beta-secretase (BACE1) to investigate the impact of ligand protonation on screening efficacy. A comparative evaluation of the performance and its dependence on ligand protonation states docking by Surflex, eHiTS, GOLD, and FlexX-Pharm was performed. Virtual screening performed by FlexX-Pharm (EF(1%)=69) and Surflex (EF(1%)=58) provided the best efficiency. Screening protocols by FlexX-Pharm and GOLD were affected by ligand protonation, while performance of Surflex did not depend on ligand protonation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Protones , Algoritmos , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína , Programas Informáticos
17.
Proteins ; 64(3): 749-57, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16761278

RESUMEN

Phosphorylation at Ser-133 of the kinase inducible domain of CREB (KID) triggers its binding to the KIX domain of CBP via a concomitant coil-to-helix transition. The exact role of this key event is still puzzling: it does not switch between disordered and ordered states, nor its direct interactions fully account for selectivity. Hence, we reasoned that phosphorylation may shift the conformational preferences of KID towards a binding-competent state. To this end we investigated the intrinsic structural properties of the unbound KID in phosphorylated and unphosphorylated forms by simulated annealing and molecular dynamics simulations. Although helical populations show subtle differences, phosphorylation reduces the flexibility of the turn segment connecting the two helices in the complexed structure and induces a transient structural element that corresponds to its bound conformation. It is stabilized by the pSer-133-Arg-131 interaction, which is absent from the unphosphorylated KID. Diminishing this coupling decreases the 3.1 kcal/mol contribution of pSer-133 to the binding free energy (DeltaGbind) of the phosphorylated KID to KIX by 1.1 kcal/mol, as computed in reference to Ser-133. In a binding competent form of the S133E KID mutant, the contribution of Glu-133 to DeltaGbind is by 1.5 kcal/mol smaller than that of pSer, suggesting that altered structural properties due to pSer --> Glu replacement impair the binding affinity. Thus, we propose that phoshorylation contributes to selectivity not merely by the direct interactions of the phosphate group with KIX, but also by promoting the formation of a transient structural element in the highly conserved turn segment.


Asunto(s)
Proteína de Unión a CREB/química , Simulación por Computador , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Sitios de Unión/genética , Proteína de Unión a CREB/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Moleculares , Mutación , Fosforilación , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Serina/química , Serina/metabolismo
18.
Proteins ; 60(3): 504-12, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15971204

RESUMEN

The flexibility of prolyl oligopeptidase has been investigated using molecular dynamics (MD) and molecular framework approaches to delineate the route of the substrate to the active site. The selectivity of the enzyme is mediated by a seven-bladed beta-propeller that in the crystal structure does not indicate the possible passage for the substrate to the catalytic center. Its open topology however, could allow the blades to move apart and let the substrate into the large central cavity. Flexibility analysis of prolyl oligopeptidase structure using the FIRST (Floppy Inclusion and Rigid Substructure Topology) approach and the atomic fluctuations derived from MD simulations demonstrated the rigidity of the propeller domain, which does not permit the substrate to approach the active site through this domain. Instead, a smaller tunnel at the inter-domain region comprising the highly flexible N-terminal segment of the peptidase domain and a facing hydrophilic loop from the propeller (residues 192-205) was identified by cross-correlation analysis and essential dynamics as the only potential pathway for the substrate. The functional importance of the flexible loop has been also verified by kinetic analysis of the enzyme with a split loop. Catalytic effect of engineered disulfide bridges was rationalized by characterizing the concerted motions of the two domains.


Asunto(s)
Serina Endopeptidasas/química , Animales , Sitios de Unión , Catálisis , Simulación por Computador , Cristalografía por Rayos X , Endopeptidasas/química , Entropía , Escherichia coli/metabolismo , Calor , Cinética , Modelos Moleculares , Modelos Estadísticos , Conformación Molecular , Péptido Hidrolasas/química , Péptidos/química , Docilidad , Prolil Oligopeptidasas , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Programas Informáticos , Especificidad por Sustrato , Porcinos , Termodinámica , Tripsina/química
19.
Nucleic Acids Res ; 33(Web Server issue): W303-5, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15980477

RESUMEN

Residues expected to play key roles in the stabilization of proteins [stabilizing residues (SRs)] are selected by combining several methods based mainly on the interactions of a given residue with its spatial, rather than its sequential neighborhood and by considering the evolutionary conservation of the residues. A residue is selected as a stabilizing residue if it has high surrounding hydrophobicity, high long-range order, high conservation score and if it belongs to a stabilization center. The definition of all these parameters and the thresholds used to identify the SRs are discussed in detail. The algorithm for identifying SRs was originally developed for TIM-barrel proteins [M. M. Gromiha, G. Pujadas, C. Magyar, S. Selvaraj, and I. Simon (2004), Proteins, 55, 316-329] and is now generalized for all proteins of known 3D structure. SRs could be applied in protein engineering and homology modeling and could also help to explain certain folds with significant stability. The SRide server is located at http://sride.enzim.hu.


Asunto(s)
Aminoácidos/química , Proteínas/química , Programas Informáticos , Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Internet , Conformación Proteica , Interfaz Usuario-Computador
20.
FEBS Lett ; 567(2-3): 239-42, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15178329

RESUMEN

There is a delicate balance between stability and flexibility needed for enzyme function. To avoid undesirable alteration of the functional properties during the evolutionary optimization of the structural stability under certain circumstances, and vice versa, to avoid unwanted changes of stability during the optimization of the functional properties of proteins, common sense would suggest that parts of the protein structure responsible for stability and parts responsible for function developed and evolved separately. This study shows that nature did not follow this anthropomorphic logic: the set of residues involved in function and those involved in structural stabilization of enzymes are rather overlapping than segregated.


Asunto(s)
Aminoácidos/química , Enzimas/química , Aminoácidos/metabolismo , Biología Computacional , Bases de Datos de Proteínas , Enzimas/metabolismo , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA