RESUMEN
Surface plasmon polaritons (SPPs) provide a window into the nano-optical, electrodynamic response of their host material and its dielectric environment. Graphene/α-RuCl3 serves as an ideal model system for imaging SPPs since the large work function difference between these two layers facilitates charge transfer that hole dopes graphene with n â¼ 1013 cm-2 free carriers. In this work, we study the emergent THz response of graphene/α-RuCl3 heterostructures using our home-built cryogenic scanning near-field optical microscope. Using phase-resolved imaging, we clearly observe long wavelength, heavily damped THz SPPs in a series of variable-size graphene cavities. From this, we extract the plasmonic wavelength and scattering rate in the graphene/α-RuCl3 heterostructures. We determine that the measured plasmon wavelength and electronic scattering rate match our heterostructures' theoretically predicted values. Our results demonstrate that shaping graphene into bespoke cavity structures enables observation and quantification of SPPs in heavily doped graphene that are largely not addressable with other experimental techniques. Moreover, the manifest lack of metallicity observed in the adjacent doped α-RuCl3 layer provides significant constraints on the nature of the interfacial charge transfer in this 2D heterostructure.
RESUMEN
The spin-orbit-assisted Mott insulator α-RuCl3 is proximate to the coveted quantum spin liquid (QSL) predicted by the Kitaev model. In the search for the pure Kitaev QSL, reducing the dimensionality of this frustrated magnet by exfoliation has been proposed as a way to enhance magnetic fluctuations and Kitaev interactions. Here, we perform angle-dependent tunneling magnetoresistance (TMR) measurements on ultrathin α-RuCl3 crystals with various layer numbers to probe their magnetic, electronic, and crystal structures. We observe a giant change in resistance, as large as â¼2500%, when the magnetic field rotates either within or out of the α-RuCl3 plane, a manifestation of the strongly anisotropic spin interactions in this material. In combination with scanning transmission electron microscopy, this tunneling anisotropic magnetoresistance (TAMR) reveals that few-layer α-RuCl3 crystals remain in the high-temperature monoclinic phase at low temperatures. It also shows the presence of a zigzag antiferromagnetic order below the critical temperature TN ≃ 14 K, which is twice the one typically observed in bulk samples with rhombohedral stacking. Our work offers valuable insights into the relation between the stacking order and magnetic properties of this material, which helps lay the groundwork for creating and electrically probing exotic magnetic phases such as QSLs via van der Waals engineering.
RESUMEN
Two-dimensional semiconductors, such as transition metal dichalcogenides, have demonstrated tremendous promise for the development of highly tunable quantum devices. Realizing this potential requires low-resistance electrical contacts that perform well at low temperatures and low densities where quantum properties are relevant. Here we present a new device architecture for two-dimensional semiconductors that utilizes a charge-transfer layer to achieve large hole doping in the contact region, and implement this technique to measure the magnetotransport properties of high-purity monolayer WSe2. We measure a record-high hole mobility of 80,000 cm2 V-1 s-1 and access channel carrier densities as low as 1.6 × 1011 cm-2, an order of magnitude lower than previously achievable. Our ability to realize transparent contact to high-mobility devices at low density enables transport measurements of correlation-driven quantum phases including the observation of a low-temperature metal-insulator transition in a density and temperature regime where Wigner crystal formation is expected and the observation of the fractional quantum Hall effect under large magnetic fields. The charge-transfer contact scheme enables the discovery and manipulation of new quantum phenomena in two-dimensional semiconductors and their heterostructures.
RESUMEN
The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.
RESUMEN
We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.
RESUMEN
The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.
RESUMEN
The honeycomb magnet α-RuCl3 has attracted considerable interest because it is proximate to the Kitaev Hamiltonian whose excitations are Majoranas and vortices. The thermal Hall conductivity κxy of Majorana fermions is predicted to be half-quantized. Half-quantization of κxy/T (T, temperature) was recently reported, but this observation has proven difficult to reproduce. Here, we report detailed measurements of κxy on α-RuCl3 with the magnetic field B ⥠a (zigzag axis). In our experiment, κxy/T is observed to be strongly temperature dependent between 0.5 and 10 K. We show that its temperature profile matches the distinct form expected for topological bosonic modes in a Chern-insulator-like model. Our analysis yields magnon band energies in agreement with spectroscopic experiments. At high B, the spin excitations evolve into magnon-like modes with a Chern number of ~1. The bosonic character is incompatible with half-quantization of κxy/T.
RESUMEN
Competition among exchange interactions is able to induce novel spin correlations on a bipartite lattice without geometrical frustration. A prototype example is the spiral spin liquid, which is a correlated paramagnetic state characterized by subdimensional degenerate propagation vectors. Here, using spectral graph theory, we show that spiral spin liquids on a bipartite lattice can be approximated by a further-neighbor model on the corresponding line-graph lattice that is nonbipartite, thus broadening the space of candidate materials that may support the spiral spin liquid phases. As illustrations, we examine neutron scattering experiments performed on two spinel compounds, ZnCr_{2}Se_{4} and CuInCr_{4}Se_{8}, to demonstrate the feasibility of this new approach and expose its possible limitations in experimental realizations.
RESUMEN
Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 105 m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements.
RESUMEN
Interlayer excitons (IXs) in MoSe2-WSe2 heterobilayers have generated interest as highly tunable light emitters in transition metal dichalcogenide (TMD) heterostructures. Previous reports of spectrally narrow (<1 meV) photoluminescence (PL) emission lines at low temperature have been attributed to IXs localized by the moiré potential between the TMD layers. We show that spectrally narrow IX PL lines are present even when the moiré potential is suppressed by inserting a bilayer hexagonal boron nitride (hBN) spacer between the TMD layers. We compare the doping, electric field, magnetic field, and temperature dependence of IXs in a directly contacted MoSe2-WSe2 region to those in a region separated by bilayer hBN. The doping, electric field, and temperature dependence of the narrow IX lines are similar for both regions, but their excitonic g-factors have opposite signs, indicating that the origin of narrow IX PL is not the moiré potential.
RESUMEN
Controlling the flow of charge neutral interlayer exciton (IX) quasiparticles can potentially lead to low loss excitonic circuits. Here, we report unidirectional transport of IXs along nanoscale electrostatically defined channels in an MoSe2-WSe2 heterostructure. These results are enabled by a lithographically defined triangular etch in a graphene gate to create a potential energy "slide". By performing spatially and temporally resolved photoluminescence measurements, we measure smoothly varying IX energy along the structure and high speed exciton flow with a drift velocity up to 2 × 106 cm/s, an order of magnitude larger than previous experiments. Furthermore, exciton flow can be controlled by saturating exciton population in the channel using a second laser pulse, demonstrating an optically gated excitonic transistor. Our work paves the way toward low loss excitonic circuits, the study of bosonic transport in one-dimensional channels, and custom potential energy landscapes for excitons in van der Waals heterostructures.
RESUMEN
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
RESUMEN
Spin-orbit torque (SOT)-driven deterministic control of the magnetic state of a ferromagnet with perpendicular magnetic anisotropy is key to next-generation spintronic applications including non-volatile, ultrafast and energy-efficient data-storage devices. However, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane antidamping torque, which is not allowed in conventional spin-source materials such as heavy metals and topological insulators due to the system's symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here we report an experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals magnet employing an out-of-plane antidamping SOT generated in layered WTe2, a quantum material with a low-symmetry crystal structure. Our numerical simulations suggest that the out-of-plane antidamping torque in WTe2 is essential to explain the observed magnetization switching.
RESUMEN
We demonstrate ultrasharp (â²10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first-principles calculations. The p-n junction lies at the boundary between differentially doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of α-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultrasharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of α-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and α-RuCl3 shows potential variations on a sub 10 nm length scale. First-principles calculations reveal that the charge-doping of graphene decays sharply over just nanometers from the edge of the α-RuCl3 flake.
RESUMEN
Second-harmonic generation has been applied to study lattice, electronic, and magnetic proprieties in atomically thin materials. However, inversion symmetry breaking is usually required for the materials to generate a large signal. In this work, we report a giant second-harmonic generation that arises below the Néel temperature in few-layer centrosymmetric FePS3. A layer-dependent study indicates the detected signal is from the second-order nonlinearity of the surface. The magnetism-induced surface second-harmonic response is 2 orders of magnitude larger than those reported in other magnetic systems, with the surface nonlinear susceptibility reaching 0.08-0.13 nm2/V in 2-5 L samples. By combing linear dichroism and second-harmonic generation experiments, we further confirm the giant second-harmonic generation is coupled to nematic orders formed by the three possible Zigzag antiferromagnetic domains. Our study shows that the surface second-harmonic generation is also a sensitive tool to study antiferromagnetic states in centrosymmetric atomically thin materials.
RESUMEN
The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of â¼0.6 eV can be achieved with widths of â¼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.
RESUMEN
We have developed a sensitive cryogenic second-harmonic generation microscopy to study a van der Waals antiferromagnet MnPS_{3}. We find that long-range Néel antiferromagnetic order develops from the bulk crystal down to the bilayer, while it is absent in the monolayer. Before entering the long-range antiferromagnetic ordered phase in all samples, an upturn of the second harmonic generation below 200 K indicates the formation of the short-range order and magnetoelastic coupling. We also directly image the two antiphase (180°) antiferromagnetic domains and thermally induced domain switching down to bilayer. An anomalous mirror symmetry breaking shows up in samples thinner than ten layers for the temperature both above and below the Néel temperature, which indicates a structural change in few-layer samples. Minimal change of the second harmonic generation polar patterns in strain tuning experiments indicate that the symmetry crossover at ten layers is most likely an intrinsic property of MnPS_{3} instead of an extrinsic origin of substrate-induced strain. Our results show that second harmonic generation microscopy is a direct tool for studying antiferromagnetic domains in atomically thin materials, and opens a new way to study two-dimensional antiferromagnets.
RESUMEN
Transition metal dichalcogenide moiré bilayers with spatially periodic potentials have emerged as a highly tunable platform for studying both electronic1-6 and excitonic4,7-13 phenomena. The power of these systems lies in the combination of strong Coulomb interactions with the capability of controlling the charge number in a moiré potential trap. Electronically, exotic charge orders at both integer and fractional fillings have been discovered2,5. However, the impact of charging effects on excitons trapped in moiré potentials is poorly understood. Here, we report the observation of moiré trions and their doping-dependent photoluminescence polarization in H-stacked MoSe2/WSe2 heterobilayers. We find that as moiré traps are filled with either electrons or holes, new sets of interlayer exciton photoluminescence peaks with narrow linewidths emerge about 7 meV below the energy of the neutral moiré excitons. Circularly polarized photoluminescence reveals switching from co-circular to cross-circular polarizations as moiré excitons go from being negatively charged and neutral to positively charged. This switching results from the competition between valley-flip and spin-flip energy relaxation pathways of photo-excited electrons during interlayer trion formation. Our results offer a starting point for engineering both bosonic and fermionic many-body effects based on moiré excitons14.
RESUMEN
Ferroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.
RESUMEN
The adatom arrays on surfaces offer an ideal playground to explore the mechanisms of chemical bonding via changes in the local electronic tunneling spectra. While this information is readily available in hyperspectral scanning tunneling spectroscopy data, its analysis has been considerably impeded by a lack of suitable analytical tools. Here we develop a machine learning based workflow combining supervised feature identification in the spatial domain and unsupervised clustering in the energy domain to reveal the details of structure-dependent changes of the electronic structure in adatom arrays on the Co3Sn2S2 cleaved surface. This approach, in combination with first-principles calculations, provides insight for using artificial neural networks to detect adatoms and classifies each based on their local neighborhood comprised of other adatoms. These structurally classified adatoms are further spectrally deconvolved. The unexpected inhomogeneity of electronic structures among adatoms in similar configurations is unveiled using this method, suggesting there is not a single atomic species of adatoms, but rather multiple types of adatoms on the Co3Sn2S2 surface. This is further supported by a slight contrast difference in the images (or slight size variation) of the topography of the adatoms.