Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38981480

RESUMEN

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

2.
Eur Heart J Open ; 4(2): oeae012, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532851

RESUMEN

Aims: Epidemiological research has shown relevant differences between sexes in clinical manifestations, severity, and progression of cardiovascular and metabolic disorders. To date, the mechanisms underlying these differences remain unknown. Given the rising incidence of such diseases, gender-specific research on established and emerging risk factors, such as dysfunction of glycaemic and/or lipid metabolism, of sex hormones and of gut microbiome, is of paramount importance. The relationships between sex hormones, gut microbiome, and host glycaemic and/or lipid metabolism are largely unknown even in the homoeostasis status. Yet this knowledge gap would be pivotal to pinpoint to key mechanisms that are likely to be disrupted in disease context. Methods and results: Here we present the Women4Health (W4H) cohort, a unique cohort comprising up to 300 healthy women followed up during a natural menstrual cycle, set up with the primary goal to investigate the combined role of sex hormones and gut microbiota variations in regulating host lipid and glucose metabolism during homoeostasis, using a multi-omics strategy. Additionally, the W4H cohort will take into consideration another ecosystem that is unique to women, the vaginal microbiome, investigating its interaction with gut microbiome and exploring-for the first time-its role in cardiometabolic disorders. Conclusion: The W4H cohort study lays a foundation for improving current knowledge of women-specific mechanisms in cardiometabolic regulation. It aspires to transform insights on host-microbiota interactions into prevention and therapeutic approaches for personalized health care.

3.
Exp Neurol ; 372: 114651, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38092188

RESUMEN

Mild cognitive impairment (MCI) is a common trait of Parkinson's disease (PD), often associated with early motor deficits, eventually evolving to PD with dementia in later disease stages. The neuropathological substrate of MCI is poorly understood, which weakens the development and administration of proper therapies. In an α-synuclein (αSyn)-based model of PD featuring early motor and cognitive impairments, we investigated the transcriptome profile of brain regions involved in PD with cognitive deficits, via a transcriptomic analysis based on RNA sequencing (RNA-seq) technology. Rats infused in the substantia nigra with human α-synuclein oligomers (H-SynOs) developed mild cognitive deficits after three months, as measured by the two-trial recognition test in a Y-maze and the novel object recognition test. RNA-seq analysis showed that 17,436 genes were expressed in the anterior cingulate cortex (ACC) and 17,216 genes in the hippocampus (HC). In the ACC, 51 genes were differentially expressed between vehicle and H-αSynOs treated samples, which showed N= 21 upregulated and N = 30 downregulated genes. In the HC, 104 genes were differentially expressed, the majority of them not overlapping with DEGs in the ACC, with N = 41 upregulated and N = 63 downregulated in H-αSynOs-treated samples. The Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, followed by the protein-protein interaction (PPI) network inspection of DEGs, revealed that in the ACC most enriched terms were related with immune functions, specifically with antigen processing/presentation via the major histocompatibility complex (MHC) class II and phagocytosis via CD68, supporting a role for dysregulated immune responses in early PD cognitive dysfunction. Immunofluorescence analysis confirmed the decreased expression of CD68 within microglial cells. In contrast, the most significantly enriched terms in the HC were mainly involved in mitochondrial homeostasis, potassium voltage-gated channel, cytoskeleton and fiber organisation, suggesting that the gene expression in the neuronal population was mostly affected in this region in early disease stages. Altogether results show that H-αSynOs trigger a region-specific dysregulation of gene expression in ACC and HC, providing a pathological substrate for MCI associated with early PD.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Animales , Ratas , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Perfilación de la Expresión Génica , Transcriptoma , Cognición
4.
Hum Mol Genet ; 32(5): 790-797, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136759

RESUMEN

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.


Asunto(s)
Eosinófilos , Estudio de Asociación del Genoma Completo , Humanos , Cromosomas Humanos Par 11 , Polimorfismo de Nucleótido Simple , Inmunidad Innata
5.
Mult Scler ; 27(9): 1332-1340, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33566725

RESUMEN

BACKGROUND: Defective alleles within the PRF1 gene, encoding the pore-forming protein perforin, in combination with environmental factors, cause familial type 2 hemophagocytic lymphohistiocytosis (FHL2), a rare, severe autosomal recessive childhood disorder characterized by massive release of cytokines-cytokine storm. OBJECTIVE: The aim of this study was to determine the function of hypomorph PRF1:p.A91V g.72360387 G > A on multiple sclerosis (MS) and type 1 diabetes (T1D). METHODS: We cross-compare the association data for PRF1:p.A91V mutation derived from GWAS on adult MS and pediatric T1D in Sardinians. The novel association with T1D was replicated in metanalysis in 12,584 cases and 17,692 controls from Sardinia, the United Kingdom, and Scotland. To dissect this mutation function, we searched through the coincident association immunophenotypes in additional set of general population Sardinians. RESULTS: We report that PRF1:p.A91V, is associated with increase of lymphocyte levels, especially within the cytotoxic memory T-cells, at general population level with reduced interleukin 7 receptor expression on these cells. The minor allele increased risk of MS, in 2903 cases and 2880 controls from Sardinia p = 2.06 × 10-4, odds ratio OR = 1.29, replicating a previous finding, whereas it protects from T1D p = 1.04 × 10-5, OR = 0.82. CONCLUSION: Our results indicate opposing contributions of the cytotoxic T-cell compartment to MS and T1D pathogenesis.


Asunto(s)
Autoinmunidad , Sistema Inmunológico , Autoinmunidad/genética , Niño , Humanos , Inflamación , Proteínas con Homeodominio LIM , Proteínas Musculares , Mutación , Perforina/genética , Factores de Transcripción
7.
Genet Epidemiol ; 43(1): 112-117, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565766

RESUMEN

It is unclear whether insertions and deletions (indels) are more likely to influence complex traits than abundant single-nucleotide polymorphisms (SNPs). We sought to understand which category of variation is more likely to impact health. Using the SardiNIA study as an exemplar, we characterized 478,876 common indels and 8,246,244 common SNPs in up to 5,949 well-phenotyped individuals from an isolated valley in Sardinia. We assessed association between 120 traits, resulting in 89 nonoverlapping-associated loci.We evaluated whether indels were enriched among credible sets of potential causal variants. These credible sets included 1,319 SNPs and 88 indels. We did not find indels to be significantly enriched. Indels were the most likely causal variant in seven loci, including one locus associated with monocyte count where an indel with causality and mechanism previously demonstrated (rs200748895:TGCTG/T) had a 0.999 posterior probability. Overall, our results show a very modest and nonsignificant enrichment for common indels in associated loci.


Asunto(s)
Mutación INDEL/genética , Polimorfismo de Nucleótido Simple/genética , Sitios Genéticos , Humanos , Italia , Anotación de Secuencia Molecular
8.
Nat Genet ; 50(10): 1426-1434, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224645

RESUMEN

The population of the Mediterranean island of Sardinia has made important contributions to genome-wide association studies of complex disease traits and, based on ancient DNA studies of mainland Europe, Sardinia is hypothesized to be a unique refuge for early Neolithic ancestry. To provide new insights on the genetic history of this flagship population, we analyzed 3,514 whole-genome sequenced individuals from Sardinia. Sardinian samples show elevated levels of shared ancestry with Basque individuals, especially samples from the more historically isolated regions of Sardinia. Our analysis also uniquely illuminates how levels of genetic similarity with mainland ancient DNA samples varies subtly across the island. Together, our results indicate that within-island substructure and sex-biased processes have substantially impacted the genetic history of Sardinia. These results give new insight into the demography of ancestral Sardinians and help further the understanding of sharing of disease risk alleles between Sardinia and mainland populations.


Asunto(s)
Variación Genética , Genética de Población , Filogenia , Estudios de Casos y Controles , Demografía , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Historia Antigua , Migración Humana/estadística & datos numéricos , Humanos , Italia/epidemiología , Estudios Longitudinales , Masculino , Región Mediterránea/epidemiología
9.
Nat Genet ; 49(5): 700-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28394350

RESUMEN

Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo/genética , Empalme Alternativo , Mapeo Cromosómico , Salud de la Familia , Femenino , Predisposición Genética a la Enfermedad/genética , Genética de Población , Genotipo , Humanos , Italia , Masculino , Polimorfismo de Nucleótido Simple , Sitio de Iniciación de la Transcripción
10.
N Engl J Med ; 376(17): 1615-1626, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28445677

RESUMEN

BACKGROUND: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).


Asunto(s)
Factor Activador de Células B/genética , Mutación INDEL , Lupus Eritematoso Sistémico/genética , Esclerosis Múltiple/genética , Autoinmunidad , Factor Activador de Células B/metabolismo , Estudios de Casos y Controles , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Italia , Lupus Eritematoso Sistémico/inmunología , MicroARNs , Esclerosis Múltiple/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple , Riesgo , Análisis de Secuencia de ARN , Transcripción Genética
11.
Mol Biol Evol ; 34(5): 1230-1239, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177087

RESUMEN

Sardinians are "outliers" in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , ADN Antiguo/análisis , Demografía , Etnicidad/genética , Evolución Molecular , Variación Genética/genética , Genética de Población/métodos , Haplotipos/genética , Humanos , Islas , Italia/etnología , Filogenia , Análisis de Secuencia de ADN/métodos , Población Blanca/genética
12.
Nat Genet ; 47(11): 1352-1356, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26366551

RESUMEN

We report sequencing-based whole-genome association analyses to evaluate the impact of rare and founder variants on stature in 6,307 individuals on the island of Sardinia. We identify two variants with large effects. One variant, which introduces a stop codon in the GHR gene, is relatively frequent in Sardinia (0.87% versus <0.01% elsewhere) and in the homozygous state causes Laron syndrome involving short stature. We find that this variant reduces height in heterozygotes by an average of 4.2 cm (-0.64 s.d.). The other variant, in the imprinted KCNQ1 gene (minor allele frequency (MAF) = 7.7% in Sardinia versus <1% elsewhere) reduces height by an average of 1.83 cm (-0.31 s.d.) when maternally inherited. Additionally, polygenic scores indicate that known height-decreasing alleles are at systematically higher frequencies in Sardinians than would be expected by genetic drift. The findings are consistent with selection for shorter stature in Sardinia and a suggestive human example of the proposed 'island effect' reducing the size of large mammals.


Asunto(s)
Estatura/genética , Variación Genética , Síndrome de Laron/genética , Selección Genética , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Portadoras/genética , Femenino , Efecto Fundador , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Islas , Italia , Canal de Potasio KCNQ1/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Nat Genet ; 47(11): 1272-1281, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26366554

RESUMEN

We report ∼17.6 million genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from previous sequencing-based compilations and are enriched for predicted functional consequences. Furthermore, ∼76,000 variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. We observe 14 signals, including 2 major new loci, for lipid levels and 19 signals, including 2 new loci, for inflammatory markers. The new associations would have been missed in analyses based on 1000 Genomes Project data, underlining the advantages of large-scale sequencing in this founder population.


Asunto(s)
Biomarcadores/sangre , Variación Genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Lípidos/sangre , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Efecto Fundador , Frecuencia de los Genes , Genética de Población , Genotipo , Geografía , Haplotipos , Humanos , Mediadores de Inflamación/sangre , Italia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
14.
Nat Genet ; 47(11): 1264-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26366553

RESUMEN

We report genome-wide association study results for the levels of A1, A2 and fetal hemoglobins, analyzed for the first time concurrently. Integrating high-density array genotyping and whole-genome sequencing in a large general population cohort from Sardinia, we detected 23 associations at 10 loci. Five signals are due to variants at previously undetected loci: MPHOSPH9, PLTP-PCIF1, ZFPM1 (FOG1), NFIX and CCND3. Among the signals at known loci, ten are new lead variants and four are new independent signals. Half of all variants also showed pleiotropic associations with different hemoglobins, which further corroborated some of the detected associations and identified features of coordinated hemoglobin species production.


Asunto(s)
Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Hemoglobinas/genética , Análisis de Secuencia de ADN/métodos , Adulto , Femenino , Variación Genética , Genotipo , Humanos , Islas , Italia , Masculino , Persona de Mediana Edad , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Globinas alfa/genética , Globinas beta/genética
16.
PLoS Genet ; 11(7): e1005306, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26172475

RESUMEN

DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Dosificación de Gen/genética , Linfocitos/citología , Obesidad/genética , Envejecimiento , Algoritmos , Secuencia de Bases , Distribución de la Grasa Corporal , Índice de Masa Corporal , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Análisis de Secuencia de ADN , Factores Sexuales , Circunferencia de la Cintura/genética , Relación Cintura-Cadera
17.
Eur J Hum Genet ; 23(7): 975-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25293720

RESUMEN

The utility of genotype imputation in genome-wide association studies is increasing as progressively larger reference panels are improved and expanded through whole-genome sequencing. Developing general guidelines for optimally cost-effective imputation, however, requires evaluation of performance issues that include the relative utility of study-specific compared with general/multipopulation reference panels; genotyping with various array scaffolds; effects of different ethnic backgrounds; and assessment of ranges of allele frequencies. Here we compared the effectiveness of study-specific reference panels to the commonly used 1000 Genomes Project (1000G) reference panels in the isolated Sardinian population and in cohorts of European ancestry including samples from Minnesota (USA). We also examined different combinations of genome-wide and custom arrays for baseline genotypes. In Sardinians, the study-specific reference panel provided better coverage and genotype imputation accuracy than the 1000G panels and other large European panels. In fact, even gene-centered custom arrays (interrogating ~200 000 variants) provided highly informative content across the entire genome. Gain in accuracy was also observed for Minnesotans using the study-specific reference panel, although the increase was smaller than in Sardinians, especially for rare variants. Notably, a combined panel including both study-specific and 1000G reference panels improved imputation accuracy only in the Minnesota sample, and only at rare sites. Finally, we found that when imputation is performed with a study-specific reference panel, cutoffs different from the standard thresholds of MACH-Rsq and IMPUTE-INFO metrics should be used to efficiently filter badly imputed rare variants. This study thus provides general guidelines for researchers planning large-scale genetic studies.


Asunto(s)
Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Análisis Costo-Beneficio , Frecuencia de los Genes , Genética de Población , Estudio de Asociación del Genoma Completo/economía , Genotipo , Haplotipos , Humanos , Italia , Minnesota , Proyectos de Investigación , Análisis de Secuencia de ADN/economía , Población Blanca/genética
18.
PLoS Genet ; 10(5): e1004353, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24809476

RESUMEN

Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.


Asunto(s)
Fósiles , Genética de Población , Genoma Humano , Europa (Continente) , Femenino , Humanos , Polimorfismo de Nucleótido Simple
19.
Cell ; 155(1): 242-56, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074872

RESUMEN

The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease.


Asunto(s)
Citometría de Flujo/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune/genética , Polimorfismo de Nucleótido Simple , Humanos , Fenotipo
20.
Science ; 341(6145): 565-9, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23908240

RESUMEN

Genetic variation within the male-specific portion of the Y chromosome (MSY) can clarify the origins of contemporary populations, but previous studies were hampered by partial genetic information. Population sequencing of 1204 Sardinian males identified 11,763 MSY single-nucleotide polymorphisms, 6751 of which have not previously been observed. We constructed a MSY phylogenetic tree containing all main haplogroups found in Europe, along with many Sardinian-specific lineage clusters within each haplogroup. The tree was calibrated with archaeological data from the initial expansion of the Sardinian population ~7700 years ago. The ages of nodes highlight different genetic strata in Sardinia and reveal the presumptive timing of coalescence with other human populations. We calculate a putative age for coalescence of ~180,000 to 200,000 years ago, which is consistent with previous mitochondrial DNA-based estimates.


Asunto(s)
Cromosomas Humanos Y/clasificación , Cromosomas Humanos Y/genética , Evolución Molecular , Población Blanca/genética , Adulto , Haplotipos , Humanos , Italia , Masculino , Filogenia , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA