Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32017711

RESUMEN

The mitochondrial calcium uniporter is widely accepted as the primary route of rapid calcium entry into mitochondria, where increases in matrix calcium contribute to bioenergetics but also mitochondrial permeability and cell death. Hence, regulation of uniporter activity is critical to mitochondrial homeostasis. The uniporter subunit EMRE is known to be an essential regulator of the channel-forming protein MCU in cell culture, but EMRE's impact on organismal physiology is less understood. Here we characterize a mouse model of EMRE deletion and show that EMRE is indeed required for mitochondrial calcium uniporter function in vivo. EMRE-/- mice are born less frequently; however, the mice that are born are viable, healthy, and do not manifest overt metabolic impairment, at rest or with exercise. Finally, to investigate the role of EMRE in disease processes, we examine the effects of EMRE deletion in a muscular dystrophy model associated with mitochondrial calcium overload.


Asunto(s)
Canales de Calcio/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Daño por Reperfusión Miocárdica/metabolismo
2.
Cardiovasc Res ; 115(2): 385-394, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165576

RESUMEN

Aims: Knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice abrogates mitochondrial Ca2+ uptake and permeability transition pore (PTP) opening. However, hearts from global MCU-KO mice are not protected from ischaemic injury. We aimed to investigate whether adaptive alterations occur in cell death signalling pathways in the hearts of global MCU-KO mice. Methods and results: First, we examined whether cell death may occur via an upregulation in necroptosis in MCU-KO mice. However, our results show that neither RIP1 inhibition nor RIP3 knockout afford protection against ischaemia-reperfusion injury in MCU-KO as in wildtype (WT) hearts, indicating that the lack of protection cannot be explained by upregulation of necroptosis. Instead, we have identified alterations in cyclophilin D (CypD) signalling in MCU-KO hearts. In the presence of a calcium ionophore, MCU-KO mitochondria take up calcium and do undergo PTP opening. Furthermore, PTP opening in MCU-KO mitochondria has a lower calcium retention capacity (CRC), suggesting that the calcium sensitivity of PTP is higher. Phosphoproteomics identified an increase in phosphorylation of CypD-S42 in MCU-KO. We investigated the interaction of CypD with the putative PTP component ATP synthase and identified an approximately 50% increase in this interaction in MCU-KO cardiac mitochondria. Mutation of the novel CypD phosphorylation site S42 to a phosphomimic reduced CRC, increased CypD-ATP synthase interaction by approximately 50%, and increased cell death in comparison to a phospho-resistant mutant. Conclusion: Taken together these data suggest that MCU-KO mitochondria exhibit an increase in phosphorylation of CypD-S42 which decreases PTP calcium sensitivity thus allowing activation of PTP in the absence of an MCU-mediated increase in matrix calcium.


Asunto(s)
Canales de Calcio/deficiencia , Calcio/metabolismo , Ciclofilinas/metabolismo , Mitocondrias Cardíacas/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/deficiencia , Infarto del Miocardio/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Animales , Canales de Calcio/genética , Ciclofilinas/genética , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal
3.
Pharmacol Res ; 125(Pt B): 122-131, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28899790

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle disease of known etiology without effective, or generally applicable therapy. Mitochondria are affected by the disease in animal models but whether mitochondrial dysfunction is part of the pathogenesis in patients remains unclear. We show that primary cultures obtained from muscle biopsies of DMD patients display a decrease of the respiratory reserve, a consequence of inappropriate opening of the permeability transition pore (PTP). Treatment with the cyclophilin inhibitor alisporivir - a cyclosporin A derivative that desensitizes the PTP but does not inhibit calcineurin - largely restored the maximal respiratory capacity without affecting basal oxygen consumption in cells from patients, thus reinstating a normal respiratory reserve. Treatment with alisporivir, but not with cyclosporin A, led to a substantial recovery of respiratory function matching improved muscle ultrastructure and survival of sapje zebrafish, a severe model of DMD where muscle defects are close to those of DMD patients. Alisporivir was generally well tolerated in HCV patients and could be used for the treatment of DMD.


Asunto(s)
Ciclosporina/farmacología , Mitocondrias/efectos de los fármacos , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/fisiología , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Consumo de Oxígeno/efectos de los fármacos , Pez Cebra
4.
Sci Rep ; 7(1): 2093, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522833

RESUMEN

The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Estrés del Retículo Endoplásmico , Miocitos Cardíacos/metabolismo , Factor de Transcripción CHOP/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Cardiomiopatía Dilatada/patología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Ubiquitina-Proteína Ligasas/genética , Remodelación Ventricular
5.
J Mol Cell Cardiol ; 107: 41-51, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28457941

RESUMEN

Steroid hormone receptors including estrogen receptors (ER) classically function as ligand-regulated transcription factors. However, estrogens also elicit cellular effects through binding to extra-nuclear ER (ERα, ERß, and G protein-coupled ER or GPER) that are coupled to kinases. How extra-nuclear ER actions impact cardiac ischemia-reperfusion (I/R) injury is unknown. We treated ovariectomized wild-type female mice with estradiol or an estrogen-dendrimer conjugate (EDC), which selectively activates extra-nuclear ER, or vehicle interventions for two weeks. I/R injury was then evaluated in isolated Langendorff perfused hearts. Two weeks of treatment with estradiol significantly decreased infarct size and improved post-ischemic contractile function. Similarly, EDC treatment significantly decreased infarct size and increased post-ischemic functional recovery compared to vehicle-treated hearts. EDC also caused an increase in myocardial protein S-nitrosylation, consistent with previous studies showing a role for this post-translational modification in cardioprotection. In further support of a role for S-nitrosylation, inhibition of nitric oxide synthase, but not soluble guanylyl cyclase blocked the EDC mediated protection. The administration of ICI182,780, which is an agonist of G-protein coupled estrogen receptor (GPER) and an antagonist of ERα and ERß, did not result in protection; however, ICI182,780 significantly blocked EDC-mediated cardioprotection, indicating participation of ERα and/or ERß. In studies determining the specific ER subtype and cellular target involved, EDC decreased infarct size and improved functional recovery in mice lacking ERα in cardiomyocytes. In contrast, protection was lost in mice deficient in endothelial cell ERα. Thus, extra-nuclear ERα activation in endothelium reduces cardiac I/R injury in mice, and this likely entails increased protein S-nitrosylation. Since EDC does not stimulate uterine growth, in the clinical setting EDC-like compounds may provide myocardial protection without undesired uterotrophic and cancer-promoting effects.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Isquemia/genética , Daño por Reperfusión/genética , Animales , Endotelio/metabolismo , Endotelio/patología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Isquemia/metabolismo , Isquemia/patología , Ratones , Ovariectomía , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
6.
Cell Rep ; 16(6): 1561-1573, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477272

RESUMEN

MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1(-/-) mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1(-/-) mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1(-/-) mice show marked, spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1(-/-) mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética
7.
Cardiovasc Res ; 110(1): 96-106, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26907390

RESUMEN

Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.


Asunto(s)
Cardiotoxicidad/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , Donantes de Óxido Nítrico/farmacología , Sulfuros/farmacología , Animales , Poscondicionamiento Isquémico , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo
8.
Circ Res ; 118(6): 994-1007, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26838792

RESUMEN

Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERß, which differentially regulate gene transcription. ERα and ERß regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERß localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.


Asunto(s)
Sistema Cardiovascular/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/fisiología , Animales , Estrógenos/metabolismo , Humanos , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
9.
J Am Heart Assoc ; 4(9): e002251, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26396203

RESUMEN

BACKGROUND: Idiopathic dilated cardiomyopathy is one of the most common types of cardiomyopathy. It has been proposed that an increase in oxidative stress in heart failure leads to a decrease in nitric oxide signaling, leading to impaired nitroso-redox signaling. To test this hypothesis, we investigated the occurrence of protein S-nitrosylation (SNO) and oxidation in biopsies from explanted dilated cardiomyopathy and nonfailing donor male and female human hearts. METHODS AND RESULTS: Redox-based resin-assisted capture for oxidation and SNO proteomic analysis was used to measure protein oxidation and SNO, respectively. In addition, 2-dimensional difference gel electrophoresis using maleimide sulfhydryl-reactive fluors was used to identify the SNO proteins. Protein oxidation increased in dilated cardiomyopathy biopsies in comparison with those from healthy donors. Interestingly, we did not find a consistent decrease in SNO in failing hearts; we found that some proteins showed an increase in SNO and others showed a decrease, and there were sex-specific differences in the response. We found 10 proteins with a significant decrease in SNO and 4 proteins with an increase in SNO in failing female hearts. Comparing nonfailing and failing male hearts, we found 9 proteins with a significant decrease and 12 proteins with a significant increase. We also found an increase in S-glutathionylation of endothelial nitric oxide synthase in failing female versus male hearts, suggesting an increase in uncoupled nitric oxide synthase in female hearts. CONCLUSION: These findings highlight the importance of nitroso-redox signaling in both physiological and pathological conditions, suggesting a potential target to treat heart failure.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Miocardio/metabolismo , Compuestos Nitrosos/metabolismo , Estrés Oxidativo , Proteínas/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Femenino , Glutatión/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Proteómica/métodos , Factores Sexuales , Espectrometría de Masas en Tándem
10.
J Mol Cell Cardiol ; 85: 178-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26057074

RESUMEN

Mitochondrial calcium is thought to play an important role in the regulation of cardiac bioenergetics and function. The entry of calcium into the mitochondrial matrix requires that the divalent cation pass through the inner mitochondrial membrane via a specialized pore known as the mitochondrial calcium uniporter (MCU). Here, we use mice deficient of MCU expression to rigorously assess the role of mitochondrial calcium in cardiac function. Mitochondria isolated from MCU(-/-) mice have reduced matrix calcium levels, impaired calcium uptake and a defect in calcium-stimulated respiration. Nonetheless, we find that the absence of MCU expression does not affect basal cardiac function at either 12 or 20months of age. Moreover, the physiological response of MCU(-/-) mice to isoproterenol challenge or transverse aortic constriction appears similar to control mice. Thus, while mitochondria derived from MCU(-/-) mice have markedly impaired mitochondrial calcium handling, the hearts of these animals surprisingly appear to function relatively normally under basal conditions and during stress.


Asunto(s)
Canales de Calcio/genética , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Femenino , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Volumen Sistólico
11.
Circ Res ; 116(11): 1810-9, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25999421

RESUMEN

Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Transporte Iónico , Modelos Biológicos
12.
Cardiovasc Res ; 106(2): 227-36, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25694588

RESUMEN

Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischaemic preconditioning (IPC)-induced acute cardioprotection. The majority of proteins that show increased SNO following IPC are localized to the mitochondria, and our recent studies suggest that caveolae transduce acute NO/SNO cardioprotective signalling in IPC hearts. Due to the close association between subsarcolemmal mitochondria (SSM) and the sarcolemma/caveolae, we tested the hypothesis that SSM, rather than the interfibrillar mitochondria (IFM), are major targets for NO/SNO signalling derived from caveolae-associated eNOS. Following either control perfusion or IPC, SSM and IFM were isolated from Langendorff perfused mouse hearts, and SNO was analysed using a modified biotin switch method with fluorescent maleimide fluors. In perfusion control hearts, the SNO content was higher in SSM compared with IFM (1.33 ± 0.19, ratio of SNO content Perf-SSM vs. Perf-IFM), and following IPC SNO content significantly increased preferentially in SSM, but not in IFM (1.72 ± 0.17 and 1.07 ± 0.04, ratio of SNO content IPC-SSM vs. Perf-IFM, and IPC-IFM vs. Perf-IFM, respectively). Consistent with these findings, eNOS, caveolin-3, and connexin-43 were detected in SSM, but not in IFM, and IPC resulted in a further significant increase in eNOS/caveolin-3 levels in SSM. Interestingly, we did not observe an IPC-induced increase in SNO or eNOS/caveolin-3 in SSM isolated from caveolin-3(-/-) mouse hearts, which could not be protected with IPC. In conclusion, these results suggest that SSM may be the preferential target of sarcolemmal signalling-derived post-translational protein modification (caveolae-derived eNOS/NO/SNO), thus providing an important role in IPC-induced cardioprotection.


Asunto(s)
Caveolina 3/metabolismo , Precondicionamiento Isquémico Miocárdico , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Sarcolema/metabolismo , Animales , Caveolina 3/genética , Precondicionamiento Isquémico Miocárdico/métodos , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Procesamiento Proteico-Postraduccional/genética
13.
Basic Res Cardiol ; 109(5): 433, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25115184

RESUMEN

S-nitrosation (SNO) of connexin 43 (Cx43)-formed channels modifies dye uptake in astrocytes and gap junctional communication in endothelial cells. Apart from forming channels at the plasma membrane of several cell types, Cx43 is also located at the inner membrane of myocardial subsarcolemmal mitochondria (SSM), but not in interfibrillar mitochondria (IFM). The absence or pharmacological blockade of mitochondrial Cx43 (mtCx43) reduces dye and potassium uptake. Lack of mtCx43 is associated with loss of endogenous cardioprotection by ischemic preconditioning (IPC), which is mediated by formation of reactive oxygen species (ROS). Whether or not mitochondrial Lucifer Yellow (LY), ion uptake, or ROS generation are affected by SNO of mtCx43 and whether or not cardioprotective interventions affect SNO of mtCx43 remains unknown. In SSM from rat hearts, application of NO donors (48 nmol to 1 mmol) increased LY uptake (0.5 mmol SNAP 38.4 ± 7.1 %, p < 0.05; 1 mmol GSNO 28.1 ± 7.4 %, p < 0.05) and the refilling rate of potassium (SNAP 227.9 ± 30.1 %, p < 0.05; GSNO 122.6 ± 28.1 %, p < 0.05). These effects were absent following blockade of Cx43 hemichannels by carbenoxolone as well as in IFM lacking Cx43. Unlike potassium, the sodium permeability was not affected by application of NO. Furthermore, mitochondrial ROS formation was increased following NO application compared to control SSM (0.5 mmol SNAP 22.9 ± 1.8 %, p < 0.05; 1 mmol GSNO 40.6 ± 7.1 %, p < 0.05), but decreased in NO treated IFM compared to control (0.5 mmol SNAP 14.4 ± 4 %, p < 0.05; 1 mmol GSNO 13.8 ± 4 %, p < 0.05). NO donor administration to isolated SSM increased SNO of mtCx43 by 109.2 ± 15.8 %. Nitrite application (48 nmol) to mice was also associated with elevated SNO of mtCx43 by 59.3 ± 18.2 % (p < 0.05). IPC by four cycles of 5 min of ischemia and 5 min of reperfusion increased SNO of mtCx43 by 41.6 ± 1.7 % (p < 0.05) when compared to control perfused rat hearts. These data suggest that SNO of mtCx43 increases mitochondrial permeability, especially for potassium and leads to increased ROS formation. The increased amount of SNO mtCx43 by IPC or nitrite administration may link NO and Cx43 in the signal transduction cascade of cardioprotective interventions.


Asunto(s)
Conexina 43/metabolismo , Precondicionamiento Isquémico Miocárdico , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Western Blotting , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrosación , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especies Reactivas de Oxígeno
14.
J Muscle Res Cell Motil ; 35(1): 23-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24619215

RESUMEN

Muscular dystrophies (MDs) are a heterogeneous group of diseases that share a common end-point represented by muscular wasting. MDs are caused by mutations in a variety of genes encoding for different molecules, including extracellular matrix, transmembrane and membrane-associated proteins, cytoplasmic enzymes and nuclear proteins. However, it is still to be elucidated how genetic mutations can affect the molecular mechanisms underlying the contractile impairment occurring in these complex pathologies. The intracellular accumulation of reactive oxygen species (ROS) is widely accepted to play a key role in contractile derangements occurring in the different forms of MDs. However, scarce information is available concerning both the most relevant sources of ROS and their major molecular targets. This review focuses on (i) the sources of ROS, with a special emphasis on monoamine oxidase, a mitochondrial enzyme, and (ii) the targets of ROS, highlighting the relevance of the oxidative modification of myofilament proteins.


Asunto(s)
Distrofias Musculares/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Miofibrillas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
15.
J Mol Cell Cardiol ; 73: 18-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24440455

RESUMEN

Nitric oxide is a gaseous signaling molecule that is well-known for the Nobel prize-winning research that defined nitric oxide as a physiological regulator of blood pressure in the cardiovascular system. Nitric oxide can signal via the classical pathway involving activation of guanylyl cyclase or by a post-translational modification, referred to as S-nitrosylation (SNO) that can occur on cysteine residues of proteins. As proteins with cysteine residues are common, this allows for amplification of the nitric oxide signaling. This review will focus on the possible mechanisms through which SNO can alter protein function in cardiac cells, and the role of SNO occupancy in these mechanisms. The specific mechanisms that regulate protein SNO, including redox-dependent processes, will also be discussed. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".


Asunto(s)
Corazón , S-Nitrosotioles/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional
16.
Circ Res ; 113(12): 1308-19, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24062335

RESUMEN

RATIONALE: Mice lacking cyclophilin D (CypD(-/-)), a mitochondrial chaperone protein, have altered cardiac metabolism. As acetylation has been shown to regulate metabolism, we tested whether changes in protein acetylation might play a role in these metabolic changes in CypD(-/-) hearts. OBJECTIVE: Our aim was to test the hypothesis that loss of CypD alters the cardiac mitochondrial acetylome. METHODS AND RESULTS: To identify changes in lysine-acetylated proteins and to map acetylation sites after ablation of CypD, we subjected tryptic digests of isolated cardiac mitochondria from wild-type and CypD(-/-) mice to immunoprecipitation using agarose beads coupled to antiacetyl lysine antibodies followed by mass spectrometry. We used label-free analysis for the relative quantification of the 875 common peptides that were acetylated in wild-type and CypD(-/-) samples and found 11 peptides (10 proteins) decreased and 96 peptides (48 proteins) increased in CypD(-/-) samples. We found increased acetylation of proteins in fatty acid oxidation and branched-chain amino acid metabolism. To evaluate whether this increase in acetylation might play a role in the inhibition of fatty acid oxidation that was previously reported in CypD(-/-) hearts, we measured the activity of l-3-hydroxyacyl-CoA dehydrogenase, which was acetylated in the CypD(-/-) hearts. Consistent with the hypothesis, l-3-hydroxyacyl-CoA dehydrogenase activity was inhibited by ≈50% compared with the wild-type mitochondria. CONCLUSIONS: These results implicate a role for CypD in modulating protein acetylation. Taken together, these results suggest that ablation of CypD leads to changes in the mitochondrial acetylome, which may contribute to altered mitochondrial metabolism in CypD(-/-) mice.


Asunto(s)
Ciclofilinas/fisiología , Mitocondrias Cardíacas/metabolismo , Acetilación , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/deficiencia , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Proteoma/genética
17.
J Mol Cell Cardiol ; 56: 81-90, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23262437

RESUMEN

Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Ciclo del Ácido Cítrico , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Ácido Pirúvico/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Consumo de Oxígeno , Propionatos/metabolismo , Proteoma/metabolismo
18.
J Am Coll Cardiol ; 57(3): 300-9, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21232667

RESUMEN

OBJECTIVES: We investigated the incidence and contribution of the oxidation/nitrosylation of tropomyosin and actin to the contractile impairment and cardiomyocyte injury occurring in human end-stage heart failure (HF) as compared with nonfailing donor hearts. BACKGROUND: Although there is growing evidence that augmented intracellular accumulation of reactive oxygen/nitrogen species may play a key role in causing contractile dysfunction, there is a dearth of data regarding their contractile protein targets in human HF. METHODS: In left ventricular (LV) biopsies from explanted failing hearts (New York Heart Association functional class IV; HF group) and nonfailing donor hearts (NF group), carbonylation of actin and tropomyosin, disulphide cross-bridge (DCB) formation, and S-nitrosylation in tropomyosin were assessed, along with plasma troponin I and LV ejection fraction (LVEF). RESULTS: The LV biopsies from the HF group had 2.14 ± 0.23-fold and 2.31 ± 0.46-fold greater levels in actin and tropomyosin carbonylation, respectively, and 1.77 ± 0.45-fold greater levels of high-molecular-weight complexes of tropomyosin due to DCB formation, compared with the NF group. Tropomyosin also underwent S-nitrosylation that was 1.3 ± 0.15-fold higher in the HF group. Notably, actin and tropomyosin carbonylation was significantly correlated with both loss of viability indicated by plasma troponin I and contractile impairment as shown by reduced LVEF. CONCLUSIONS: This study demonstrated that oxidative/nitrosylative changes of actin and tropomyosin are largely increased in human failing hearts. Because these changes are inversely correlated to LVEF, actin and tropomyosin oxidation are likely to contribute to the contractile impairment evident in end-stage HF.


Asunto(s)
Actinas/metabolismo , Insuficiencia Cardíaca/metabolismo , Estrés Oxidativo/fisiología , Tropomiosina/metabolismo , Adulto , Anciano , Proteínas Contráctiles/metabolismo , Femenino , Insuficiencia Cardíaca/patología , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
19.
Antioxid Redox Signal ; 14(5): 881-91, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20615074

RESUMEN

Mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability, yet a mild degree of mitochondrial dysfunction appears to underlie cardioprotection against injury caused by postischemic reperfusion. This review is focused on two major mechanisms of mitochondrial dysfunction, namely, oxidative stress and opening of the mitochondrial permeability transition pore. The formation of reactive oxygen species in mitochondria will be analyzed with regard to factors controlling mitochondrial permeability transition pore opening. Finally, these mitochondrial processes are analyzed with respect to cardioprotection afforded by ischemic pre- and postconditioning.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Mitocondrias Cardíacas/patología , Animales , Humanos , Isquemia/metabolismo , Isquemia/fisiopatología , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Especies Reactivas de Oxígeno/metabolismo
20.
Hum Mol Genet ; 19(21): 4207-15, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20716577

RESUMEN

Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.


Asunto(s)
Monoaminooxidasa/metabolismo , Distrofia Muscular Animal/patología , Miofibrillas/patología , Estrés Oxidativo , Animales , Colágeno Tipo VI/genética , Colágeno Tipo VI/fisiología , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA