Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biochem J ; 479(11): 1181-1204, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35552369

RESUMEN

The AMP-activated protein kinase (AMPK) αßγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2ß2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2ß2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating ß2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2ß2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2ß1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2ß2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Músculo Esquelético/metabolismo , Fosforilación
2.
Cell Rep ; 38(7): 110365, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172150

RESUMEN

AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lisosomas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Femenino , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Front Psychiatry ; 12: 747268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880790

RESUMEN

Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.

4.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638732

RESUMEN

The X-linked FMR1 gene contains a non-coding trinucleotide repeat in its 5' region that, in normal, healthy individuals contains 20-44 copies. Large expansions of this region (>200 copies) cause fragile X syndrome (FXS), but expansions of 55-199 copies (referred to as premutation alleles) predispose carriers to a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). The cytopathological mechanisms underlying FXTAS are poorly understood, but abnormalities in mitochondrial function are believed to play a role. We previously reported that lymphoblastoid cell lines (LCLs, or lymphoblasts) of premutation carriers have elevated mitochondrial respiratory activities. In the carriers, especially those not clinically affected with FXTAS, AMP-activated protein kinase (AMPK) activity was shown to be elevated. In the FXTAS patients, however, it was negatively correlated with brain white matter lesions, suggesting a protective role in the molecular mechanisms. Here, we report an enlarged and extended study of mitochondrial function and associated cellular stress-signaling pathways in lymphoblasts isolated from male and female premutation carriers, regardless of their clinical status, and healthy controls. The results confirmed the elevation of AMPK and mitochondrial respiratory activities and reduction in reactive O2 species (ROS) levels in premutation cells and revealed for the first time that target of rapamycin complex I (TORC1) activities are reduced. Extensive correlation, multiple regression, and principal components analysis revealed the best fitting statistical explanations of these changes in terms of the other variables measured. These suggested which variables might be the most "proximal" regulators of the others in the extensive network of known causal interactions amongst the measured parameters of mitochondrial function and cellular stress signaling. In the resulting model, the premutation alleles activate AMPK and inhibit both TORC1 and ROS production, the reduced TORC1 activity contributes to activation of AMPK and of nonmitochondrial metabolism, and the higher AMPK activity results in elevated catabolic metabolism, mitochondrial respiration, and ATP steady state levels. In addition, the results suggest a separate CGG repeat number-dependent elevation of TORC1 activity that is insufficient to overcome the inhibition of TORC1 in premutation cells but may presage the previously reported activation of TORC1 in FXS cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Linfocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias , Proteínas Mitocondriales , Transducción de Señal/genética , Expansión de Repetición de Trinucleótido , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
J Biol Chem ; 295(48): 16239-16250, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32913128

RESUMEN

The calcium-calmodulin-dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495 We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transducción de Señal , Proteínas 14-3-3/genética , Animales , Células COS , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática , Humanos
6.
Nat Metab ; 2(9): 873-881, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719536

RESUMEN

Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules1. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for ß-oxidation2-6. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) ß1-containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the ß-subunit. ß1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK ß1-selective activators and promote LCFA oxidation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acilcoenzima A/fisiología , Regulación Alostérica/fisiología , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Compuestos de Bifenilo , Dominio Catalítico , Ésteres , Isoenzimas/química , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación/genética , Oxidación-Reducción , Palmitoil Coenzima A/metabolismo , Fosforilación , Pironas/farmacología , Tiofenos/farmacología
7.
FEBS J ; 287(10): 2087-2104, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32196931

RESUMEN

Meteorin-like (metrnl) is a recently identified adipomyokine that beneficially affects glucose metabolism; however, its underlying mechanism of action is not completely understood. We here show that the level of metrnl increases in vitro under electrical pulse stimulation and in vivo in exercised mice, suggesting that metrnl is secreted during muscle contractions. In addition, metrnl increases glucose uptake via the calcium-dependent AMPKα2 pathway in skeletal muscle cells and increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPKα2-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. An intraperitoneal injection of recombinant metrnl improved glucose tolerance in mice with high-fat-diet-induced obesity or type 2 diabetes, but not in AMPK ß1ß2 muscle-specific null mice. Metrnl improves glucose metabolism via AMPKα2 and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Diabetes Mellitus Tipo 2/genética , Histona Desacetilasas/genética , Factores de Crecimiento Nervioso/genética , Obesidad/genética , Proteínas 14-3-3/genética , Animales , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Estimulación Eléctrica , Glucosa/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Resistencia a la Insulina/genética , Ratones , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factores de Crecimiento Nervioso/farmacología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/patología , Condicionamiento Físico Animal , Proteínas Recombinantes/farmacología
8.
Nat Metab ; 2(1): 41-49, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993556

RESUMEN

Central to cellular metabolism and cell proliferation are highly conserved signalling pathways controlled by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)1,2, dysregulation of which are implicated in pathogenesis of major human diseases such as cancer and type 2 diabetes. AMPK pathways leading to reduced cell proliferation are well established and, in part, act through inhibition of TOR complex-1 (TORC1) activity. Here we demonstrate reciprocal regulation, specifically that TORC1 directly down-regulates AMPK signalling by phosphorylating the evolutionarily conserved residue Ser367 in the fission yeast AMPK catalytic subunit Ssp2, and AMPK α1Ser347/α2Ser345 in the mammalian homologs, which is associated with reduced phosphorylation of activation loop Thr172. Genetic or pharmacological inhibition of TORC1 signalling led to AMPK activation in the absence of increased AMP:ATP ratios; under nutrient stress conditions this was associated with growth limitation in both yeast and human cell cultures. Our findings reveal fundamental, bi-directional regulation between two major metabolic signalling networks and uncover new opportunity for cancer treatment strategies aimed at suppressing cell proliferation in the nutrient-poor tumor microenvironment.


Asunto(s)
Adenilato Quinasa/antagonistas & inhibidores , Proliferación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Nutrientes/metabolismo , Estrés Fisiológico , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Dominio Catalítico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Activación Enzimática , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Neoplasias/metabolismo , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/fisiología
9.
FASEB J ; 33(12): 14825-14840, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31670977

RESUMEN

ATPase inhibitory factor 1 (IF1) is an ATP synthase-interacting protein that suppresses the hydrolysis activity of ATP synthase. In this study, we observed that the expression of IF1 was up-regulated in response to electrical pulse stimulation of skeletal muscle cells and in exercized mice and healthy men. IF1 stimulates glucose uptake via AMPK in skeletal muscle cells and primary cultured myoblasts. Reactive oxygen species and Rac family small GTPase 1 (Rac1) function in the upstream and downstream of AMPK, respectively, in IF1-mediated glucose uptake. In diabetic animal models, the administration of recombinant IF1 improved glucose tolerance and down-regulated blood glucose level. In addition, IF1 inhibits ATP hydrolysis by ß-F1-ATPase in plasma membrane, thereby increasing extracellular ATP and activating the protein kinase B (Akt) pathway, ultimately leading to glucose uptake. Thus, we suggest that IF1 is a novel myokine and propose a mechanism by which AMPK and Akt contribute independently to IF1-mediated improvement of glucose tolerance impairment. These results demonstrate the importance of IF1 as a potential antidiabetic agent.-Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., Murray-Segal, L., Kemp, B. E., Mantzoros, C. S., Krauss, R. M., Shin, M.-J., Kim, H. S. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways.


Asunto(s)
Glucosa/metabolismo , Mioblastos/metabolismo , Proteínas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Adulto , Animales , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Proteínas/genética , Proteínas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/uso terapéutico , Proteína Inhibidora ATPasa
10.
Front Genet ; 9: 531, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483310

RESUMEN

The fragile X premutation (PM) allele contains a CGG expansion of 55-200 repeats in the FMR1 gene's promoter. Male PM carriers have an elevated risk of developing neurological and psychiatric changes, including an approximately 50% risk of the fragile X-associated tremor/ataxia syndrome (FXTAS). The aim of this study was to assess the relationships of regional white matter hyperintensities (wmhs) semi-quantitative scores, clinical status, motor (UPDRS, ICARS, Tremor) scales, and cognitive impairments, with FMR1-specific genetic changes, in a sample of 32 unselected male PM carriers aged 39-81 years. Half of these individuals were affected with FXTAS, while the non-FXTAS group comprised subcategories of non-affected individuals and individuals affected with non-syndromic changes. The dynamics of pathological processes at the cellular level relevant to the clinical status of PM carriers was investigated using the enzyme AMP-activated protein kinase (AMPK), which is a highly sensitive cellular stress-sensing alarm protein. This enzyme, as well as genetic markers - CGG repeat number and the levels of the FMR1 mRNA - were assessed in blood lymphoblasts. The results showed that the repeat distribution for FXTAS individuals peaked at 85-90 CGGs; non-FXTAS carriers were distributed within the lowest end of the PM repeat range, and non-syndromic carriers assumed an intermediate position. The size of the CGG expansion was significantly correlated, across all three categories, with infratentorial and total wmhs and with all motor scores, and the FMR1 mRNA levels with all the wmh scores, whilst AMPK activity showed considerable elevation in the non-FXTAS combined group, decreasing in the FXTAS group, proportionally to increasing severity of the wmhs and tremor/ataxia. We conclude that the size of the CGG expansion relates to the risk for FXTAS, to severity of infratentorial wmhs lesions, and to all three motor scale scores. FMR1 mRNA shows a strong association with the extent of wmhs, which is the most sensitive marker of the pathological process. However, the AMPK activity findings - suggestive of a role of this enzyme in the risk of FXTAS - need to be verified and expanded in future studies using larger samples and longitudinal assessment.

11.
J Biol Chem ; 293(23): 8874-8885, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695504

RESUMEN

Inhibition of the metabolic regulator AMP-activated protein kinase (AMPK) is increasingly being investigated for its therapeutic potential in diseases where AMPK hyperactivity results in poor prognoses, as in established cancers and neurodegeneration. However, AMPK-inhibitory tool compounds are largely limited to compound C, which has a poor selectivity profile. Here we identify the pyrimidine derivative SBI-0206965 as a direct AMPK inhibitor. SBI-0206965 inhibits AMPK with 40-fold greater potency and markedly lower kinase promiscuity than compound C and inhibits cellular AMPK signaling. Biochemical characterization reveals that SBI-0206965 is a mixed-type inhibitor. A co-crystal structure of the AMPK kinase domain/SBI-0206965 complex shows that the drug occupies a pocket that partially overlaps the ATP active site in a type IIb inhibitor manner. SBI-0206965 has utility as a tool compound for investigating physiological roles for AMPK and provides fresh impetus to small-molecule AMPK inhibitor therapeutic development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Benzamidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Benzamidas/química , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química
12.
Cell Chem Biol ; 25(6): 728-737.e9, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29657085

RESUMEN

The AMP-activated protein kinase (AMPK) αßγ heterotrimer regulates cellular energy homeostasis with tissue-specific isoform distribution. Small-molecule activation of skeletal muscle α2ß2 AMPK complexes may prove a valuable treatment strategy for type 2 diabetes and insulin resistance. Herein, we report the small-molecule SC4 is a potent, direct AMPK activator that preferentially activates α2 complexes and stimulates skeletal muscle glucose uptake. In parallel with the term secretagog, we propose "importagog" to define a substance that induces or augments cellular uptake of another substance. Three-dimensional structures of the glucose importagog SC4 bound to activated α2ß2γ1 and α2ß1γ1 complexes reveal binding determinants, in particular a key interaction between the SC4 imidazopyridine 4'-nitrogen and ß2-Asp111, which provide a design paradigm for ß2-AMPK therapeutics. The α2ß2γ1/SC4 structure reveals an interaction between a ß2 N-terminal α helix and the α2 autoinhibitory domain. Our results provide a structure-function guide to accelerate development of potent, but importantly tissue-specific, ß2-AMPK therapeutics.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Benzoatos/farmacología , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Benzoatos/síntesis química , Benzoatos/química , Células COS , Línea Celular , Chlorocebus aethiops , Cristalografía por Rayos X , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Músculo Esquelético/metabolismo , Piridinas/síntesis química , Piridinas/química , Ratas , Ratas Wistar , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
13.
Nat Commun ; 8(1): 571, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924239

RESUMEN

AMP-activated protein kinase (AMPK) is a metabolic stress-sensing enzyme responsible for maintaining cellular energy homeostasis. Activation of AMPK by salicylate and the thienopyridone A-769662 is critically dependent on phosphorylation of Ser108 in the ß1 regulatory subunit. Here, we show a possible role for Ser108 phosphorylation in cell cycle regulation and promotion of pro-survival pathways in response to energy stress. We identify the autophagy initiator Unc-51-like kinase 1 (ULK1) as a ß1-Ser108 kinase in cells. Cellular ß1-Ser108 phosphorylation by ULK1 was dependent on AMPK ß-subunit myristoylation, metabolic stress associated with elevated AMP/ATP ratio, and the intrinsic energy sensing capacity of AMPK; features consistent with an AMP-induced myristoyl switch mechanism. We further demonstrate cellular AMPK signaling independent of activation loop Thr172 phosphorylation, providing potential insight into physiological roles for Ser108 phosphorylation. These findings uncover new mechanisms by which AMPK could potentially maintain cellular energy homeostasis independently of Thr172 phosphorylation.AMPK is involved in sensing of metabolic stress. The authors show that the autophagy initiator ULK1 phosphorylates ß1-Ser108 on the regulatory ß1-subunit, sensitizing AMPK to allosteric drugs, and activates signaling pathways that appear independent of Thr172 phosphorylation in the kinase activation loop.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Compuestos de Bifenilo , Células COS , Chlorocebus aethiops , Células HEK293 , Homeostasis , Humanos , Modelos Biológicos , Fosforilación , Pironas/farmacología , Salicilatos/farmacología , Tiofenos/farmacología
14.
Dis Model Mech ; 9(11): 1295-1305, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27638668

RESUMEN

In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired - proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a 'normal' and a 'hyperactive' state characterized by two different metabolic rates. The apparent stability of the 'hyperactive' state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the 'hyperactive' state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the 'hyperactive' state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined.


Asunto(s)
Linfocitos/metabolismo , Linfocitos/patología , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Factores de Edad , Línea Celular Transformada , Respiración de la Célula , Dosificación de Gen , Genoma , Humanos , Potencial de la Membrana Mitocondrial , Fosforilación Oxidativa , Consumo de Oxígeno , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC , Especies Reactivas de Oxígeno/metabolismo , Análisis de Regresión , Índice de Severidad de la Enfermedad
15.
Nat Commun ; 7: 10912, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26952388

RESUMEN

The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Activadores de Enzimas/química , Isoxazoles/química , Organofosfonatos/química , Proteínas Quinasas Activadas por AMP/genética , Regulación Alostérica , Sitios de Unión , Activación Enzimática , Activadores de Enzimas/metabolismo , Humanos , Isoxazoles/metabolismo , Modelos Moleculares , Organofosfonatos/metabolismo , Fosforilación
16.
Biochim Biophys Acta ; 1843(2): 253-64, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24184208

RESUMEN

The c-Jun N-terminal kinases (JNKs) are a group of stress-activated protein kinases that regulate gene expression changes through specific phosphorylation of nuclear transcription factor substrates. To address the mechanisms underlying JNK nuclear entry, we employed a semi-intact cell system to demonstrate for the first time that JNK1 nuclear entry is dependent on the importin α2/ß1 heterodimer and independent of importins α3, α4, ß2, ß3, 7 and 13. However, quantitative image analysis of JNK1 localization following exposure of cells to either arsenite or hyperosmotic stress did not indicate its nuclear accumulation. Extending our analyses to define the dynamics of nuclear trafficking of JNK1, we combined live cell imaging analyses with fluorescence recovery after photobleaching (FRAP) protocols. Subnuclear and subcytoplasmic bleaching protocols revealed the slowed movement of JNK1 in both regions in response to hyperosmotic stress. Strikingly, while movement into the nucleus of green fluorescent protein (GFP) or transport of a GFP-T-antigen fusion protein as estimated by initial rates and time to reach half-maximal recovery (t1/2) measures remained unaltered, hyperosmotic stress slowed the nuclear entry of GFP-JNK1. In contrast, arsenite exposure which did not alter the initial rates of nuclear accumulation of GFP, GFP-T-antigen or GFP-JNK1, decreased the t1/2 for nuclear accumulation of both GFP and GFP-JNK1. Thus, our results challenge the paradigm of increased nuclear localization of JNK broadly in response to all forms of stress-activation and are consistent with enhanced interactions of stress-activated JNK1 with scaffold and substrate proteins throughout the nucleus and the cytosol under conditions of hyperosmotic stress.


Asunto(s)
Núcleo Celular/metabolismo , Espacio Intracelular/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Presión Osmótica , Sorbitol/farmacología , Estrés Fisiológico , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Arsenitos/farmacología , Núcleo Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Espacio Intracelular/efectos de los fármacos , Carioferinas/metabolismo , Cinética , Ratones , Presión Osmótica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/enzimología
17.
Int J Biochem Cell Biol ; 45(8): 1939-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23792175

RESUMEN

A novel 18 amino acid peptide PYC98 was demonstrated to inhibit JNK1 activity toward c-Jun. We observed a 5-fold increase in the potency of the retro-inverso form, D-PYC98 (a D-amino acid peptide in the reversed sequence) when compared with the inhibition achieved by L-PYC98, prompting our further evaluation of the D-PYC98 inhibitory mechanism. In vitro assays revealed that, in addition to the inhibition of c-Jun phosphorylation, D-PYC98 inhibited the JNK1-mediated phosphorylation of an EGFR-derived peptide, the ATF2 transcription factor, and the microtubule-regulatory protein DCX. JNK2 and JNK3 activities toward c-Jun were also inhibited, and surface plasmon resonance analysis confirmed the direct interaction of D-PYC98 and JNK1. Further kinetics analyses revealed the non-ATP competitive mechanism of action of D-PYC98 as a JNK1 inhibitor. The targeting of the JNK1 common docking site by D-PYC98 was confirmed by the competition of binding by TIJIP. However, as mutations of JNK1 R127 and E329 within the common docking domain did not impact on the affinity of the interaction with D-PYC98 measured by surface plasmon resonance analysis, other residues in the common docking site appear to contribute to the JNK1 interaction with D-PYC98. Furthermore, we found that D-PYC98 inhibited the related kinase p38 MAPK, suggesting a broader interest in developing D-PYC98 for possible therapeutic applications. Lastly, in evaluating the efficacy of this peptide to act as a substrate competitive inhibitor in cells, we confirmed that the cell-permeable D-PYC98-TAT inhibited c-Jun Ser63 phosphorylation during hyperosmotic stress. Thus, D-PYC98-TAT is a novel cell-permeable JNK inhibitor.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción Activador 2/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Proteína Doblecortina , Pruebas de Enzimas , Receptores ErbB/metabolismo , Proteínas Inmovilizadas/metabolismo , Ratones , Datos de Secuencia Molecular , Péptidos/química , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-jun/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Biochim Biophys Acta ; 1834(6): 1077-88, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23410953

RESUMEN

Based on bioinformatics interrogation of the genome, >500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4'-methyl-N(2)-3-pyridinyl-4,5'-bi-1,3-thiazole-2,2'-diamine (JNK Docking (JD) compound 123, but not the related compound (4'-methyl-N~2~-(6-methyl-2-pyridinyl)-4,5'-bi-1,3-thiazole-2,2'-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-ß or p38-δ. Further screening of a broad panel of kinases using 10µM JD123, identified inhibition of kinases including protein kinase Bß (PKBß/Aktß). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBß/Aktß.


Asunto(s)
Diaminas/química , Diaminas/farmacología , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/química , Tiazoles/farmacología , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Línea Celular , Células Cultivadas , Propuestas de Licitación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
19.
Biochem J ; 434(3): 399-413, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21162712

RESUMEN

An improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin). Analysis of cell culture studies confirmed the actions of a cell-permeable version of PYC71 to inhibit c-Jun phosphorylation during acute hyperosmotic stress. The analysis of the in vitro data for the kinetics of this inhibition indicated a substrate-inhibitor complex-mediated inhibition of JNK by PYC71N. Alanine-scanning replacement studies revealed the importance of two residues (PYC71N Phe9 or Phe11 within an FXF motif) for JNK inhibition. The importance of these residues was confirmed through interaction studies showing that each change decreased interaction of the peptide with c-Jun. Furthermore, PYC71N interacted with both non-phosphorylated (inactive) JNK1 and the substrate c-Jun, but did not recognize active JNK1. In contrast, a previously characterized JNK-inhibitory peptide TIJIP [truncated inhibitory region of JIP (JNK-interacting protein)], showed stronger interaction with active JNK1. Competition binding analysis confirmed that PYC71N inhibited the interaction of c-Jun with JNK1. Taken together, the results of the present study define novel properties of the PYC71N peptide as well as differences from the characterized TIJIP, and highlight the value of these peptides to probe the biochemistry of JNK-mediated substrate interactions and phosphorylation.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/química , Fragmentos de Péptidos/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteína Doblecortina , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Cinética , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/química , Células PC12 , Fragmentos de Péptidos/farmacología , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Proteínas Recombinantes/química
20.
Biochim Biophys Acta ; 1804(3): 463-75, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19900593

RESUMEN

c-Jun N-terminal kinases (JNKs), first characterized as stress-activated members of the mitogen-activated protein kinase (MAPK) family, have become a focus of inhibitor screening strategies following studies that have shown their critical roles in the development of a number of diseases, such as diabetes, neurodegeneration and liver disease. We discuss recent advances in the discovery and development of ATP-competitive and ATP-noncompetitive JNK inhibitors. Because understanding the modes of actions of these inhibitors and improving their properties will rely on a better understanding of JNK structure, JNK catalytic mechanisms and substrates, recent advances in these areas of JNK biochemistry are also considered. In addition, the use of JNK gene knockout animals is continuing to reveal in vivo functions for these kinases, with tissue-specific roles now being dissected with tissue-specific knockouts. These latest advances highlight the many challenges now faced, particularly in the directed targeting of the JNK isoforms in specific tissues.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Inhibidores de Proteínas Quinasas/química , Animales , Catálisis , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Hepatopatías/tratamiento farmacológico , Hepatopatías/enzimología , Hepatopatías/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA