Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Rev Immunol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009868

RESUMEN

Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.

2.
Infect Immun ; 92(5): e0009924, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38557196

RESUMEN

The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Interleucina-22 , Animales , Ratones , Citrobacter rodentium/inmunología , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Interleucina-22/genética , Interleucina-22/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Proteínas Asociadas a Pancreatitis/inmunología
3.
Curr Protoc ; 3(7): e824, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37478288

RESUMEN

The pathogen Salmonella enterica encompasses a range of bacterial serovars that cause intestinal inflammation and systemic infections in humans. Mice are a widely used infection model due to their relative simplicity and versatility. Here, we provide standardized protocols for culturing the prolific zoonotic pathogen S. enterica serovar Typhimurium for intragastric inoculation of mice to model colitis or systemic dissemination, along with techniques for direct extraintestinal infection. Furthermore, we present procedures for quantifying pathogen burden and for characterizing the immune response by analyzing tissue pathology, inflammatory markers, and immune cells from intestinal tissues. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Murine colitis model utilizing oral streptomycin pretreatment and oral S. Typhimurium administration Basic Protocol 2: Intraperitoneal injection of S. Typhimurium for modeling extraintestinal infection Support Protocol 1: Preparation of S. Typhimurium inoculum Support Protocol 2: Preparation of mixed S. Typhimurium inoculum for competitive infection Basic Protocol 3: Assessment of S. Typhimurium burden Support Protocol 3: Preservation and pathological assessment of S. Typhimurium-infected tissues Support Protocol 4: Measurement of inflammatory marker expression in intestinal tissues by qPCR Support Protocol 5: Preparation of intestinal content for inflammatory marker quantification by ELISA Support Protocol 6: Immune cell isolation from Salmonella-infected intestinal tissues.


Asunto(s)
Colitis , Infecciones por Salmonella , Humanos , Ratones , Animales , Salmonella typhimurium , Modelos Animales de Enfermedad , Infecciones por Salmonella/complicaciones , Infecciones por Salmonella/patología , Intestinos/patología , Colitis/microbiología , Colitis/patología
4.
mBio ; 13(5): e0218422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094114

RESUMEN

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract and profound alterations to the gut microbiome. Adherent-invasive Escherichia coli (AIEC) is a mucosa-associated pathobiont that colonizes the gut of patients with Crohn's disease, a form of IBD. Because AIEC exacerbates gut inflammation, strategies to reduce the AIEC bloom during colitis are highly desirable. To thrive in the inflamed gut, Enterobacteriaceae acquire the essential metal nutrient iron by producing and releasing siderophores. Here, we implemented an immunization-based strategy to target the siderophores enterobactin and its glucosylated derivative salmochelin to reduce the AIEC bloom in the inflamed gut. Using chemical (dextran sulfate sodium) and genetic (Il10-/- mice) IBD mouse models, we showed that immunization with enterobactin conjugated to the mucosal adjuvant cholera toxin subunit B potently elicited mucosal and serum antibodies against these siderophores. Siderophore-immunized mice exhibited lower AIEC gut colonization, diminished AIEC association with the gut mucosa, and reduced colitis severity. Moreover, Peyer's patches and the colonic lamina propria harbored enterobactin-specific B cells that could be identified by flow cytometry. The beneficial effect of siderophore immunization was primarily B cell-dependent because immunized muMT-/- mice, which lack mature B lymphocytes, were not protected during AIEC infection. Collectively, our study identified siderophores as a potential therapeutic target to reduce AIEC colonization and its association with the gut mucosa, which ultimately may reduce colitis exacerbation. Moreover, this work provides the foundation for developing monoclonal antibodies against siderophores, which could provide a narrow-spectrum strategy to target the AIEC bloom in Crohn's disease patients. IMPORTANCE Adherent-invasive Escherichia coli (AIEC) is abnormally prevalent in patients with ileal Crohn's disease and exacerbates intestinal inflammation, but treatment strategies that selectively target AIEC are unavailable. Iron is an essential micronutrient for most living organisms, and bacterial pathogens have evolved sophisticated strategies to capture iron from the host environment. AIEC produces siderophores, small, secreted molecules with a high affinity for iron. Here, we showed that immunization to elicit antibodies against siderophores promoted a reduction of the AIEC bloom, interfered with AIEC association with the mucosa, and mitigated colitis in experimental mouse models. We also established a flow cytometry-based approach to visualize and isolate siderophore-specific B cells, a prerequisite for engineering monoclonal antibodies against these molecules. Together, this work could lead to a more selective and antibiotic-sparing strategy to target AIEC in Crohn's disease patients.


Asunto(s)
Colitis , Enfermedad de Crohn , Infecciones por Escherichia coli , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sideróforos , Enfermedad de Crohn/microbiología , Interleucina-10 , Enterobactina , Sulfato de Dextran , Toxina del Cólera , Escherichia coli/genética , Adhesión Bacteriana , Colitis/prevención & control , Colitis/microbiología , Mucosa Intestinal/microbiología , Inflamación/complicaciones , Enfermedades Inflamatorias del Intestino/complicaciones , Inmunización , Antibacterianos/farmacología , Hierro , Anticuerpos Monoclonales/farmacología , Micronutrientes
5.
Nat Chem ; 14(1): 100-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795435

RESUMEN

Although metals are essential for the molecular machineries of life, systematic methods for discovering metal-small molecule complexes from biological samples are limited. Here, we describe a two-step native electrospray ionization-mass spectrometry method, in which post-column pH adjustment and metal infusion are combined with ion identity molecular networking, a rule-based data analysis workflow. This method enabled the identification of metal-binding compounds in complex samples based on defined mass (m/z) offsets of ion species with the same chromatographic profiles. As this native electrospray metabolomics approach is suited to the use of any liquid chromatography-mass spectrometry system to explore the binding of any metal, this method has the potential to become an essential strategy for elucidating metal-binding molecules in biology.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Metales/metabolismo , Sitios de Unión , Cromatografía Liquida/métodos
6.
Nat Commun ; 12(1): 7016, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853318

RESUMEN

Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin's affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.


Asunto(s)
Enterobacteriaceae/metabolismo , Sideróforos/metabolismo , Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP , Animales , Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Colon/microbiología , Colon/patología , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Femenino , Complejo de Antígeno L1 de Leucocito , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Fenoles , Salmonella typhi , Tiazoles
7.
Mol Aspects Med ; 75: 100895, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32883564

RESUMEN

Iron is an essential micronutrient for nearly all living organisms. In addition to facilitating redox reactions, iron is bound by metalloproteins that participate in a variety of biological processes. As the bioavailability of free iron in host environments is extremely low, iron lies at the center of a battle for nutrients between microbes and their host. Mucosal surfaces such as the respiratory and gastrointestinal tracts are constantly exposed to commensal and pathogenic microorganisms. Whereas a key strategy of mammalian antimicrobial defense is to deprive microbes of iron, pathogens and some commensals have evolved effective strategies to circumvent iron limitation. Here we provide an overview of mechanisms underpinning the tug-of-war for iron between microbes and their host, with a particular focus on mucosal surfaces.


Asunto(s)
Hierro/metabolismo , Animales , Humanos
8.
Cell Chem Biol ; 27(7): 765-767, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32679090

RESUMEN

Infections with Salmonella enterica pose a challenge for antibiotic treatment. In this issue of Cell Chemical Biology, Tsai et al. use a chemical genomics approach to identify dephostatin as an inhibitor of intracellular Salmonella virulence in vitro and in vivo by targeting the two-component systems SsrA-SsrB and PmrB-PmrA.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Factores de Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo , Virulencia , Factores de Virulencia/genética
9.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32033951

RESUMEN

Salmonella enterica is a foodborne pathogen often leading to gastroenteritis and is commonly acquired by consumption of contaminated food of animal origin. However, frequency of outbreaks linked to the consumption of fresh or minimally processed food of nonanimal origin is increasing. New infection routes of S. enterica by vegetables, fruits, nuts, and herbs have to be considered. This leads to special interest in S. enterica interactions with leafy products, e.g., salads, that are mainly consumed in a minimally processed form. The attachment of S. enterica to salad is a crucial step in contamination, but little is known about the bacterial factors required and mechanisms of adhesion. S. enterica possesses a complex set of adhesive structures whose functions are only partly understood. Potentially, S. enterica may deploy multiple adhesive strategies for adhering to various salad species and other vegetables. In this study, we systematically analyzed the contributions of the complete adhesiome, of lipopolysaccharide (LPS), and of flagellum-mediated motility of S. enterica serovar Typhimurium (STM) in adhesion to Valerianella locusta (corn salad). We deployed a reductionist, synthetic approach to identify factors involved in the surface binding of STM to leaves of corn salad, with particular regard to the expression of all known adhesive structures, using the Tet-on system. This work reveals the contribution of Saf fimbriae, type 1 secretion system-secreted BapA, an intact LPS, and flagellum-mediated motility of STM in adhesion to corn salad leaves.IMPORTANCE Transmission of gastrointestinal pathogens by contaminated fresh produce is of increasing relevance to human health. However, the mechanisms of contamination of, persistence on, and transmission by fresh produce are poorly understood. We investigated the contributions of the various adhesive structures of STM to the initial event in transmission, i.e., binding to the plant surface. A reductionist system was used that allowed experimentally controlled surface expression of individual adhesive structures and analyses of the contribution to binding to leave surfaces of corn salad under laboratory conditions. The model system allowed the determination of the relative contributions of fimbrial and nonfimbrial adhesins, the type 3 secretion systems, the O antigen of lipopolysaccharide, the flagella, and chemotaxis of STM to binding to corn salad leaves. Based on these data, future work could reveal the mechanism of binding and the relevance of interaction under agricultural conditions.


Asunto(s)
Adhesión Bacteriana , Microbiología de Alimentos , Salmonella typhimurium/fisiología , Valerianella/microbiología , Lipopolisacáridos/metabolismo
10.
J Immunol ; 203(2): 532-543, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142601

RESUMEN

Gut lymphocytes and the microbiota establish a reciprocal relationship that impacts the host immune response. Class I-restricted T cell-associated molecule (CRTAM) is a cell adhesion molecule expressed by intraepithelial T cells and is required for their retention in the gut. In this study, we show that CRTAM expression affects gut microbiota composition under homeostatic conditions. Moreover, Crtam-/- mice infected with the intestinal pathogen Salmonella exhibit reduced Th17 responses, lower levels of inflammation, and reduced Salmonella burden, which is accompanied by expansion of other microbial taxa. Thus, CRTAM enhances susceptibility to Salmonella, likely by promoting the inflammatory response that promotes the pathogen's growth. We also found that the gut microbiota from wild-type mice, but not from Crtam-/- mice, induces CRTAM expression and Th17 responses in ex-germ-free mice during Salmonella infection. Our study demonstrates a reciprocal relationship between CRTAM expression and the gut microbiota, which ultimately impacts the host response to enteric pathogens.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunoglobulinas/inmunología , Linfocitos T/inmunología , Animales , Femenino , Inflamación/inmunología , Intestinos/inmunología , Masculino , Ratones , Salmonella/inmunología , Infecciones por Salmonella/inmunología , Células Th17/inmunología
11.
J Interferon Cytokine Res ; 39(4): 214-223, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30855201

RESUMEN

CCL28 is a mucosal chemokine that has been involved in various responses, including IgA production. We have analyzed its production in human tissues using a comprehensive microarray database. Its highest expression is in the salivary gland, indicating that it is an important component of saliva. It is also expressed in the trachea, bronchus, and in the mammary gland upon onset of lactation. We have also characterized a Ccl28-/- mouse that exhibits very low IgA levels in milk, and the IgA levels in feces are also reduced. These observations confirm a role for the CCL28/CCR10 chemokine axis in the recruitment of IgA plasmablasts to the lactating mammary gland. CCL28 is also expressed in the vomeronasal organ. We also detected olfactory defects (anosmia) in a Ccl28-/- mouse suggesting that CCL28 is involved in the function/development of olfaction. Importantly, Ccl28-/- mice are highly susceptible to Salmonella enterica serovar Typhimurium in an acute model of infection, indicating that CCL28 plays a major role in innate immunity against Salmonella in the gut. Finally, microbiome studies revealed modest differences in the gut microbiota between Ccl28-/- mice and their cohoused wild-type littermates. The latter observation suggests that under homeostatic conditions, CCL28 plays a limited role in shaping the gut microbiome.


Asunto(s)
Quimiocinas CC/inmunología , Quimiocinas CC/fisiología , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Salmonelosis Animal/inmunología , Olfato/fisiología , Inmunidad Adaptativa/inmunología , Animales , Microbioma Gastrointestinal/inmunología , Homeostasis/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Salmonelosis Animal/microbiología , Salmonella enterica/inmunología
12.
Nat Commun ; 9(1): 3771, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30218022

RESUMEN

Salmonella strains are traditionally classified into serovars based on their surface antigens. While increasing availability of whole-genome sequences has allowed for more detailed subtyping of strains, links between genotype, serovar, and host remain elusive. Here we reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars. Model-predicted growth capabilities in over 530 different environments demonstrate that: (1) the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell wall biosynthesis; (2) metabolic capabilities correspond to each strain's serovar and isolation host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690 out of 858); (4) 27 strains are auxotrophic for at least one compound, including L-tryptophan, niacin, L-histidine, L-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are important for fitness in the gastrointestinal environment are lost amongst extraintestinal serovars. Our results reveal growth differences that may reflect adaptation to particular colonization sites.


Asunto(s)
Genoma Bacteriano/genética , Redes y Vías Metabólicas/genética , Salmonella/genética , Serogrupo , Pared Celular/metabolismo , Genotipo , Fenotipo , Salmonella/metabolismo
13.
J Immunol ; 199(9): 3326-3335, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978694

RESUMEN

We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99), that is expressed in bone marrow and fetal liver and whose expression is also induced in peripheral B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (∼27-kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer's patches and lower numbers of IgA-secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. Although naive B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL-4 and TGF-ß1, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called IL-40, that plays an important role in humoral immune responses and may also play a role in B cell development. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observations suggest that it may play a role in the pathogenesis of certain human diseases.


Asunto(s)
Linfocitos B/inmunología , Regulación de la Expresión Génica/inmunología , Interleucinas/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Humanos , Inmunoglobulina A/inmunología , Interleucinas/genética , Células Jurkat , Linfoma de Células B/genética , Linfoma de Células B/inmunología , Ratones , Ratones Noqueados
14.
Nature ; 540(7632): 280-283, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27798599

RESUMEN

The Enterobacteriaceae are a family of Gram-negative bacteria that include commensal organisms as well as primary and opportunistic pathogens that are among the leading causes of morbidity and mortality worldwide. Although Enterobacteriaceae often comprise less than 1% of a healthy intestine's microbiota, some of these organisms can bloom in the inflamed gut; expansion of enterobacteria is a hallmark of microbial imbalance known as dysbiosis. Microcins are small secreted proteins that possess antimicrobial activity in vitro, but whose role in vivo has been unclear. Here we demonstrate that microcins enable the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to limit the expansion of competing Enterobacteriaceae (including pathogens and pathobionts) during intestinal inflammation. Microcin-producing EcN limits the growth of competitors in the inflamed intestine, including commensal E. coli, adherent-invasive E. coli and the related pathogen Salmonella enterica. Moreover, only therapeutic administration of the wild-type, microcin-producing EcN to mice previously infected with S. enterica substantially reduced intestinal colonization by the pathogen. Our work provides the first evidence that microcins mediate inter- and intraspecies competition among the Enterobacteriaceae in the inflamed gut. Moreover, we show that microcins can act as narrow-spectrum therapeutics to inhibit enteric pathogens and reduce enterobacterial blooms.


Asunto(s)
Bacteriocinas/metabolismo , Enterobacteriaceae/crecimiento & desarrollo , Escherichia coli/metabolismo , Inflamación/microbiología , Inflamación/patología , Intestinos/microbiología , Intestinos/patología , Animales , Bacteriocinas/genética , Bacteriocinas/uso terapéutico , Disbiosis/microbiología , Enterobacteriaceae/patogenicidad , Escherichia coli/clasificación , Escherichia coli/crecimiento & desarrollo , Femenino , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos/metabolismo , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/patogenicidad , Simbiosis
15.
Nature ; 534(7609): 697-9, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27309805

RESUMEN

Changes in the gut microbiota may underpin many human diseases, but the mechanisms that are responsible for altering microbial communities remain poorly understood. Antibiotic usage elevates the risk of contracting gastroenteritis caused by Salmonella enterica serovars, increases the duration for which patients shed the pathogen in their faeces, and may on occasion produce a bacteriologic and symptomatic relapse. These antibiotic-induced changes in the gut microbiota can be studied in mice, in which the disruption of a balanced microbial community by treatment with the antibiotic streptomycin leads to an expansion of S. enterica serovars in the large bowel. However, the mechanisms by which streptomycin treatment drives an expansion of S. enterica serovars are not fully resolved. Here we show that host-mediated oxidation of galactose and glucose promotes post-antibiotic expansion of S. enterica serovar Typhimurium (S. Typhimurium). By elevating expression of the gene encoding inducible nitric oxide synthase (iNOS) in the caecal mucosa, streptomycin treatment increased post-antibiotic availability of the oxidation products galactarate and glucarate in the murine caecum. S. Typhimurium used galactarate and glucarate within the gut lumen of streptomycin pre-treated mice, and genetic ablation of the respective catabolic pathways reduced S. Typhimurium competitiveness. Our results identify host-mediated oxidation of carbohydrates in the gut as a mechanism for post-antibiotic pathogen expansion.


Asunto(s)
Antibacterianos/farmacología , Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Patógeno/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Estreptomicina/farmacología , Animales , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Ciego/efectos de los fármacos , Ciego/enzimología , Ciego/microbiología , Femenino , Galactosa/metabolismo , Gastroenteritis/microbiología , Ácido Glucárico/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Operón/genética , Oxidación-Reducción/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Azúcares Ácidos/metabolismo
16.
Cell Host Microbe ; 19(6): 814-25, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27281571

RESUMEN

Neutrophils hinder bacterial growth by a variety of antimicrobial mechanisms, including the production of reactive oxygen species and the secretion of proteins that sequester nutrients essential to microbes. A major player in this process is calprotectin, a host protein that exerts antimicrobial activity by chelating zinc and manganese. Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized metal transporters to evade calprotectin sequestration of manganese, allowing the bacteria to outcompete commensals and thrive in the inflamed gut. The pathogen's ability to acquire manganese in turn promotes function of SodA and KatN, enzymes that use the metal as a cofactor to detoxify reactive oxygen species. This manganese-dependent SodA activity allows the bacteria to evade neutrophil killing mediated by calprotectin and reactive oxygen species. Thus, manganese acquisition enables S. Typhimurium to overcome host antimicrobial defenses and support its competitive growth in the intestine.


Asunto(s)
Gastroenteritis/microbiología , Intestinos/microbiología , Complejo de Antígeno L1 de Leucocito/farmacología , Manganeso/metabolismo , Estrés Oxidativo/fisiología , Salmonella typhimurium/fisiología , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Quelantes/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/enzimología , Salmonella typhimurium/crecimiento & desarrollo , Simbiosis , Zinc/metabolismo
17.
Nat Rev Immunol ; 16(3): 135-48, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26898110

RESUMEN

The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.


Asunto(s)
Bacterias/inmunología , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Humanos , Inmunidad Innata/inmunología
18.
PLoS Negl Trop Dis ; 9(9): e0004027, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366739

RESUMEN

In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS) are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.


Asunto(s)
Tolerancia Inmunológica , Malaria/complicaciones , Malaria/inmunología , Salmonelosis Animal/complicaciones , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Bacteriemia/complicaciones , Bacteriemia/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Vacunas Atenuadas/inmunología
20.
Trends Immunol ; 36(2): 112-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25582038

RESUMEN

Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad , Infecciones por Salmonella/inmunología , Salmonella/inmunología , Animales , Humanos , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Intestinos/microbiología , Estrés Oxidativo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA