Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Phytother Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225174

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathogenesis mechanisms. Among these, ß-amyloid plaques and hyperphosphorylated Tau protein tangles have been identified as significant contributors to neuronal damage. This study investigates thonningianin A (TA) from Penthorum chinense Pursh (PCP) as a potential inhibitor targeting these pivotal proteins in AD progression. The inhibitory potential of PCP and TA on Aß fibrillization was initially investigated. Subsequently, ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and biolayer interferometry were employed to determine TA's affinity for both Aß and Tau. The inhibitory effects of TA on the levels and cytotoxicity of AD-related proteins were then assessed. In 3xTg-AD mice, the therapeutic potential of TA was evaluated. Additionally, the molecular interactions between TA and either Aß or Tau were explored using molecular docking. We found that PCP-total ethanol extract and TA significantly inhibited Aß fibrillization. Additionally, TA demonstrated strong affinity to Aß and Tau, reduced levels of amyloid precursor protein and Tau, and alleviated mitochondrial distress in PC-12 cells. In 3xTg-AD mice, TA improved cognition, reduced Aß and Tau pathology, and strengthened neurons. Moreover, molecular analyses revealed efficient binding of TA to Aß and Tau. In conclusion, TA, derived from PCP, shows significant neuroprotection against AD proteins, highlighting its potential as an anti-AD drug candidate.

2.
Acta Pharm Sin B ; 14(8): 3327-3361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220869

RESUMEN

Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.

3.
Front Pharmacol ; 15: 1408031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983916

RESUMEN

Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aß) aggregation, and targeting both Aß aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aß aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aß aggregate accumulation and mitigated Aß-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aß-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aß-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.

4.
Heliyon ; 10(11): e32230, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933948

RESUMEN

Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.

5.
Elife ; 132024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573820

RESUMEN

Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.


Asunto(s)
Trombocitopenia , Clorhidrato de Vilazodona , Ratones , Animales , Clorhidrato de Vilazodona/efectos adversos , Clorhidrato de Vilazodona/metabolismo , Pez Cebra , Receptor de Serotonina 5-HT1A/metabolismo , Plaquetas/metabolismo , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/metabolismo , Megacariocitos/metabolismo , Trombopoyesis
6.
Phytomedicine ; 127: 155463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452694

RESUMEN

BACKGROUND: Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aß) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD: In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS: Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aß and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION: Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo
7.
Neural Regen Res ; 19(11): 2467-2479, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526283

RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00027/figure1/v/2024-03-08T184507Z/r/image-tiff Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer's disease. Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases, including Parkinson's and Huntington's diseases, however, the effect of Citri Reticulatae Semen on Alzheimer's disease remains unelucidated. In the current study, the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated. Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy. In addition, Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro, and suppress amyloid-beta-induced pathology such as paralysis, in a transgenic Caenorhabditis elegans in vivo model. Moreover, genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent. Most importantly, Citri Reticulatae Semen extract was confirmed to improve cognitive impairment, neuronal injury and amyloid-beta burden in 3×Tg Alzheimer's disease mice. As revealed by both in vitro and in vivo models, these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer's disease via its neuroprotective autophagic effects.

8.
Mech Ageing Dev ; 218: 111901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215997

RESUMEN

Pharmacological strategies to delay aging and combat age-related diseases are increasingly promising. This study explores the anti-aging and therapeutic effects of two novel 18-norspirostane steroidal saponins from Trillium tschonoskii Maxim, namely deoxytrillenoside CA (DTCA) and epitrillenoside CA (ETCA), using Caenorhabditis elegans (C. elegans). Both DTCA and ETCA significantly extended the lifespan of wild-type N2 worms and improved various age-related phenotypes, including muscle health, motility, pumping rate, and lipofuscin accumulation. Furthermore, these compounds exhibited notable alleviation of pathology associated with Parkinson's disease (PD) and Huntington's disease (HD), such as the reduction of α-synuclein and poly40 aggregates, improvement in motor deficits, and mitigation of neuronal damage. Meanwhile, DTCA and ETCA improved the lifespan and healthspan of PD- and HD-like C. elegans models. Additionally, DTCA and ETCA enhanced the resilience of C. elegans against heat and oxidative stress challenges. Mechanistic studies elucidated that DTCA and ETCA induced mitophagy and promoted mitochondrial biogenesis in C. elegans, while genetic mutations or RNAi knockdown affecting mitophagy and mitochondrial biogenesis effectively eliminated their capacity to extend lifespan and reduce pathological protein aggregates. Together, these compelling findings highlight the potential of DTCA and ETCA as promising therapeutic interventions for delaying aging and preventing age-related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Saponinas , Animales , Caenorhabditis elegans/metabolismo , Longevidad , Mitofagia , Biogénesis de Organelos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Saponinas/farmacología
9.
J Mater Chem B ; 12(7): 1775-1781, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38284142

RESUMEN

Here we report for the first time that mercaptopyrimidine-templated gold nanoclusters (DAMP-AuNCs) can be used as a novel anticoagulant candidate for the design of antithrombotic drugs. Anticoagulant mechanisms revealed that DAMP-AuNCs significantly inhibited thrombus formation by interacting with fibrinogen. Carrageenan-induced mice tail thrombosis model experiments showed that DAMP-AuNCs had antithrombotic efficacy comparable to heparin in vivo. More importantly, these ultrasmall AuNCs possess excellent blood compatibility and only induce negligible bleeding side effects. Our study is a successful attempt at developing novel antithrombotic agents with high biosafety.


Asunto(s)
Fibrinolíticos , Oro , Ratones , Animales , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Heparina , Anticoagulantes , Fibrinógeno
10.
CNS Neurosci Ther ; 30(4): e14515, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37905594

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS: The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS: In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION: Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidopamina/toxicidad , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad
11.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003724

RESUMEN

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente , Péptidos beta-Amiloides/metabolismo , Éter/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Éteres de Etila/metabolismo , Éteres de Etila/farmacología , Éteres de Etila/uso terapéutico , Éteres/farmacología , Modelos Animales de Enfermedad
12.
Biomed Pharmacother ; 167: 115478, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37703661

RESUMEN

Blood retinal barrier (BRB) damage is an important pathogenesis of diabetic retinopathy, and alleviating BRB damage has become a key target for DR treatment. We previously found that Lycopene seed polyphenols (LSP) maintained BRB integrity by inhibiting NLRP3 inflammasome-mediated inflammation. However, it is still unknown whether LSP inhibits retinal neovascularization with abnormal capillaries and its mechanism of action. Here, we employed db/db mice and hRECs to find that LSP increases the level of glycolipid metabolism, maintains the morphology of retinal endothelial cells and inhibits acellular capillary neogenesis. Mechanistic studies revealed that LSP inhibits the NLRP3 inflammasome, reduces cell apoptosis in retinal tissue, increases tight junction protein (TJ) expression, and reduces vascular endothelial growth factor (VEGF) and Ve-Cadherin in vivo and in vitro. Collectively, this study finds that LSP inhibits inflammation and angiogenesis to improve BRB function to ameliorate DR.


Asunto(s)
Retinopatía Diabética , Litchi , Ratones , Animales , Inflamasomas/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Células Endoteliales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retinopatía Diabética/patología , Inflamación/metabolismo , Apoptosis
13.
Ageing Res Rev ; 91: 102078, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37758006

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.


Asunto(s)
Enfermedades Neurodegenerativas , Ribosa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Daño del ADN , Reparación del ADN
15.
Biomed Pharmacother ; 165: 115261, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549461

RESUMEN

Enhancing the clearance of proteins associated with Alzheimer's disease (AD) emerges as a promising approach for AD therapeutics. This study explores the potential of Radix Stellariae, a traditional Chinese medicine, in treating AD. Utilizing transgenic C. elegans models of AD, we demonstrated that a 75% ethanol extract of Radix Stellariae (RSE) (at 50 µg/mL) effectively diminishes Aß and Tau protein expression, and alleviates their induced impairments including paralysis, behavioral dysfunction, neurotoxicity, and ROS accumulation. Additionally, RSE enhances the stress resistance of C. elegans. Further investigations revealed that RSE promotes autophagy, a critical cellular process for protein degradation, in these models. We found that inhibiting autophagy-related genes negated the neuroprotective effects of RSE, suggesting a central role for autophagy in the actions of RSE. In PC-12 cells, we observed that RSE not only inhibited Aß fibril formation but also promoted the degradation of AD-related proteins and reduced their cytotoxicity. Mechanistically, RSE was found to induce autophagy via modulating PI3K/AKT/mTOR and AMPK/mTOR signaling pathways. Importantly, inhibiting autophagy counteracted the beneficial effects of RSE on the clearance of AD-associated proteins. Moreover, we identified Dichotomine B, a ß-carboline alkaloid, as a key active constituent of RSE in mitigating AD pathology in C. elegans at concentrations ranging from 50 to 1000 µM. Collectively, our study presents novel discoveries that RSE alleviates AD pathology and toxicity primarily by inducing autophagy, both in vivo and in vitro. These findings open up new avenues for exploring the therapeutic potential of RSE and its active component, Dichotomine B, in treating neurodegenerative diseases like AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilinositol 3-Quinasas , Autofagia , Serina-Treonina Quinasas TOR , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
16.
J Nanobiotechnology ; 21(1): 282, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598148

RESUMEN

Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ojo , Humanos , Disponibilidad Biológica , Hidrogeles , Liposomas
17.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37394882

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Luffa , Fármacos Neuroprotectores , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Luffa/metabolismo , Péptidos beta-Amiloides/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Frutas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología
18.
Phytomedicine ; 117: 154916, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327643

RESUMEN

BACKGROUND: With population aging, the incidence of aging-related Alzheimer's disease (AD) is increasing, accompanied by decreased autophagy activity. At present, Caenorhabditis elegans (C. elegans) is widely employed to evaluate autophagy and in research on aging and aging-related diseases in vivo. To discover autophagy activators from natural medicines and investigate their therapeutic potential in antiaging and anti-AD effects, multiple C. elegans models related to autophagy, aging, and AD were used. METHOD: In this study, we employed the DA2123 and BC12921 strains to discover potential autophagy inducers using a self-established natural medicine library. The antiaging effect was evaluated by determining the lifespan, motor ability, pumping rate, lipofuscin accumulation of worms, and resistance ability of worms under various stresses. In addition, the anti-AD effect was examined by detecting the paralysis rate, food-sensing behavior, and amyloid-ß and Tau pathology in C. elegans. Moreover, RNAi technology was used to knock down the genes related to autophagy induction. RESULTS: We discovered that Piper wallichii extract (PE) and the petroleum ether fraction (PPF) activated autophagy in C. elegans, as evidenced by increased GFP-tagged LGG-1 foci and decreased GFP-p62 expression. In addition, PPF extended the lifespan and enhanced the healthspan of worms by increasing body bends and pumping rates, decreasing lipofuscin accumulation, and increasing resistance to oxidative, heat, and pathogenic stress. Moreover, PPF exhibited an anti-AD effect by decreasing the paralysis rate, improving the pumping rate and slowing rate, and alleviating Aß and Tau pathology in AD worms. However, the feeding of RNAi bacteria targeting unc-51, bec-1, lgg-1, and vps-34 abolished the antiaging and anti-AD effects of PPF. CONCLUSION: Piper wallichii may be a promising drug for antiaging and anti-AD. More future studies are also needed to identify autophagy inducers in Piper wallichii and clarify their molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Longevidad , Péptidos beta-Amiloides/metabolismo , Parálisis , Autofagia , Estrés Oxidativo
19.
Phytomedicine ; 109: 154548, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610154

RESUMEN

BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Ratones , alfa-Sinucleína/metabolismo , Caenorhabditis elegans , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales Modificados Genéticamente , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Autofagia , Enfermedad de Alzheimer/tratamiento farmacológico
20.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614259

RESUMEN

The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.


Asunto(s)
Materiales Biocompatibles , Traumatismos de la Médula Espinal , Humanos , Materiales Biocompatibles/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal , Medicina Regenerativa , Trasplante de Células Madre , Regeneración Nerviosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA