Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Chromatogr A ; 1733: 465266, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163703

RESUMEN

The pharmaceutical industry is rapidly advancing toward new drug modalities, necessitating the development of advanced analytical strategies for effective, meaningful, and reliable assays. Hydrophilic Interaction Chromatography (HILIC) is a powerful technique for the analysis of polar analytes. Despite being a well-established technique, HILIC method development can be laborious owing to the multiple factors that affect the separation mechanism, such as the selection of stationary phase chemistry, mobile phase eluents, and optimization of column equilibration time. Herein, we introduce a new automated multicolumn and multi-eluent screening workflow that streamlines the development of new HILIC assays, circumventing the existing tedious 'hit-or-miss' approach. A total of 12 complementary columns packed with sub-2 µm fully porous and 2.7 µm superficially porous particles operated on readily available ultra-high pressure liquid chromatography (UHPLC) instrumentation across a diverse set of commercially available polar stationary phases were investigated. Different mobile phases with pH ranging from pH 3 to 9 were evaluated using different organic modifiers. The gradient and column re-equilibration were judiciously set to ensure a reliable assay screening framework that indicates promising conditions for subsequent method optimization to achieve resolution of challenging mixtures. This UHPLC screening system is coupled with a diode array and charged aerosol detectors (DAD, CAD and mass spectrometry) to ensure versatile detection for a variety of compounds. This fast-screening platform lays the foundation for a convenient generic workflow, accelerating the pace of HILIC method development and transfer across both academic and industrial sectors.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Flujo de Trabajo , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno , Porosidad , Automatización
2.
J Chromatogr A ; 1730: 465109, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968662

RESUMEN

The predictive modeling of liquid chromatography methods can be an invaluable asset, potentially saving countless hours of labor while also reducing solvent consumption and waste. Tasks such as physicochemical screening and preliminary method screening systems where large amounts of chromatography data are collected from fast and routine operations are particularly well suited for both leveraging large datasets and benefiting from predictive models. Therefore, the generation of predictive models for retention time is an active area of development. However, for these predictive models to gain acceptance, researchers first must have confidence in model performance and the computational cost of building them should be minimal. In this study, a simple and cost-effective workflow for the development of machine learning models to predict retention time using only Molecular Operating Environment 2D descriptors as input for support vector regression is developed. Furthermore, we investigated the relative performance of models based on molecular descriptor space by utilizing uniform manifold approximation and projection and clustering with Gaussian mixture models to identify chemically distinct clusters. Results outlined herein demonstrate that local models trained on clusters in chemical space perform equivalently when compared to models trained on all data. Through 10-fold cross-validation on a comprehensive set containing 67,950 of our company's proprietary analytes, these models achieved coefficients of determination of 0.84 and 3 % error in terms of retention time. This promising statistical significance is found to translate from cross-validation to prospective prediction on an external test set of pharmaceutically relevant analytes. The observed equivalency of global and local modeling of large datasets is retained with METLIN's SMRT dataset, thereby confirming the wider applicability of the developed machine learning workflows for global models.


Asunto(s)
Aprendizaje Automático , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Cromatografía Liquida/métodos , Máquina de Vectores de Soporte , Análisis por Conglomerados
3.
Chem Sci ; 15(16): 5980-5992, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665537

RESUMEN

P(v) iminophosphorane compounds are accessed via electrochemical oxidation of commercially available P(iii) phosphines, including mono-, di- and tri-dentate phosphines, as well as chiral phosphines. The reaction uses inexpensive bis(trimethylsilyl)carbodiimide as an efficient and safe aminating reagent. DFT calculations, cyclic voltammetry, and NMR studies provide insight into the reaction mechanism. The proposed mechanism reveals a special case of sequential paired electrolysis. DFT calculations of the frontier orbitals of an iminophosphorane are compared with those of the analogous phosphines and phosphine oxides. X-ray crystallographic studies of the ligands as well as a Ni-coordination complex provide structural insight for these ligands. The utility of these iminophosphoranes as ligands is demonstrated in nickel-catalyzed cross-electrophile couplings including C(sp2)-C(sp3) and C(sp2)-C(sp2) couplings, an electrochemically driven C-N cross-coupling, and a photochemical arylative C(sp3)-H functionalization. In some cases, these new ligands provide improved performance over commonly used sp2-N-based ligands (e.g. 4,4'-di-tert-butyl-2,2'-bipyridine).

4.
J Chromatogr A ; 1722: 464830, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608366

RESUMEN

Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.


Asunto(s)
Programas Informáticos , Cromatografía Liquida/métodos , Algoritmos , Péptidos/análisis , Péptidos/química , Proteínas/análisis , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Inteligencia Artificial , Vacunas/química , Vacunas/análisis , Retroalimentación
5.
Anal Chem ; 96(12): 4960-4968, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38436624

RESUMEN

The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.


Asunto(s)
Productos Biológicos , Refractometría , Flujo de Trabajo , Cromatografía en Gel , Proteínas/análisis
6.
Anal Chim Acta ; 1293: 342178, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331548

RESUMEN

The (bio)pharmaceutical industry is rapidly moving towards complex drug modalities that require a commensurate level of analytical enabling technologies that can be deployed at a fast pace. Unsystematic method development and unnecessary manual intervention remain a major barrier towards a more efficient deployment of meaningful analytical assay across emerging modalities. Digitalization and automation are key to streamline method development and enable rapid assay deployment. This review discusses the use of computer-assisted multifactorial chromatographic method development strategies for fast-paced downstream characterization and purification of biopharmaceuticals. Various chromatographic techniques such as reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), ion exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and supercritical fluid chromatography (SFC) are addressed and critically reviewed. The most significant parameters for retention mechanism modelling, as well as mapping the separation landscape for optimal chromatographic selectivity and resolution are also discussed. Furthermore, several computer-assisted approaches for optimization and development of chromatographic methods of therapeutics, including linear, nonlinear, and multifactorial modelling are outlined. Finally, the potential of the chromatographic modelling and computer-assisted optimization strategies are also illustrated, highlighting substantial productivity improvements, and cost savings while accelerating method development, deployment and transfer processes for therapeutic analysis in industrial settings.


Asunto(s)
Cromatografía de Fase Inversa , Computadores , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión , Interacciones Hidrofóbicas e Hidrofílicas , Preparaciones Farmacéuticas
7.
Anal Chem ; 96(3): 1138-1146, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165811

RESUMEN

Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.


Asunto(s)
Desarrollo de Medicamentos , Acústica , Espectrometría de Masas/métodos , Péptidos , Flujo de Trabajo
8.
J Pharm Biomed Anal ; 241: 115923, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244392

RESUMEN

Ion Chromatography (IC) is one of the most widely used methods for analyzing ionic species in pharmaceutical samples. A universal IC method that can separate a wide range of different analytes is highly desired as it can save a lot of time for method development and validation processes. Herein we report the development of a universal method for anions in active pharmaceutical ingredients (APIs) using computer-assisted chromatography modeling tools. We have screened three different IC columns (Dionex IonPac AS28-Fast 4 µm, AS19 4 µm and AS11-HC 4 µm) to determine the best suitable column for universal IC method development. A universal IC method was then developed using an AS11-HC 4 µm column to separate 31 most common anionic substances in 36 mins. This method was optimized using LC Simulator and a model which precisely predicts the retention behavior of 31 anions was established. This model demonstrated an excellent match between predicted and experimental analyte retention time (R2 =0.999). To validate this universal IC method, we have studied the stability of sulfite and sulfide analytes in ambient conditions. The method was then validated for a subset of 29 anions using water and organic solvent/water binary solvents as diluents for commercial APIs. This universal IC method provides an efficient and simple way to separate and analyze common anions in APIs. In addition, the method development process combined with LC simulator modeling can be effectively used as a starting point during method development for other ions beyond those investigated in this study.


Asunto(s)
Medicamentos a Granel , Agua , Cromatografía por Intercambio Iónico/métodos , Aniones/química , Iones , Solventes/análisis , Computadores
9.
Anal Chem ; 95(49): 18130-18138, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015205

RESUMEN

Real-time monitoring of biopharmaceutical reactors is becoming increasingly important as the processes become more complex. During the continuous manufacturing of monoclonal antibodies (mAbs), the desired mAb product is continually created and collected over a 30 day process, where there can be changes in quality over that time. Liquid chromatography (LC) is the workhorse instrumentation capable of measuring mAb concentration as well as quality attributes such as aggregation, charge variants, oxidation, etc. However, traditional offline sampling is too infrequent to fully characterize bioprocesses, and the typical time from sample generation to data analysis and reporting can take weeks. To circumvent these limitations, an automated online sampling multidimensional workflow was developed to enable streamlined measurements of mAb concentration, aggregation, and charge variants. This analytical framework also facilitates automated data export for real-time analysis of up to six bioreactors, including feedback-controlling capability using readily available LC technology. This workflow increases the data points per bioreactor, improving the understanding of each experiment while also reducing the data turnaround time from weeks to hours. Examples of effective real-time analyses of mAb critical quality attributes are illustrated, showing substantial throughput improvements and accurate results while minimizing labor and manual intervention.


Asunto(s)
Productos Biológicos , Reactores Biológicos , Retroalimentación , Anticuerpos Monoclonales/química , Cromatografía Liquida
10.
Org Lett ; 25(27): 5001-5005, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37382389

RESUMEN

The solution-based gram-scale synthesis of complex and highly potent proprotein convertase subtilisin-like/kexin type 9 (PCSK9) inhibitor 1 is presented. Construction of Northern fragment 2, followed by stepwise installation of Eastern 3, Southern 4, and Western 5 fragments, provided macrocyclic precursor 19. This intermediate was cross-linked via an intramolecular azide-alkyne click reaction, which preceded macrolactamization to afford the core framework of compound 1. Finally, coupling with poly(ethylene glycol) side-chain-based 6 gave the PCSK9 inhibitor 1.


Asunto(s)
Proproteína Convertasa 9
11.
Anal Chem ; 94(49): 17131-17141, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36441925

RESUMEN

The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a "hit-or-miss" strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.


Asunto(s)
Productos Biológicos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas/métodos , Anticuerpos Monoclonales/análisis
12.
Angew Chem Int Ed Engl ; 61(45): e202208854, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36111975

RESUMEN

Generality in analytical chemistry can be manifested in impactful platforms that can streamline modern organic synthesis and biopharmaceutical processes. We herein introduce a hybrid separation technique named Dual-Gradient Unified Chromatography (DGUC), which is built upon an automated dynamic modulation of CO2 , organic modifier, and water blends with various buffers. This concept enables simultaneous multicomponent analysis of both small and large molecules across a wide polarity range in single experimental runs. After a careful investigation of its fundamental aspects, a DGUC-DAD-MS screening workflow that combines multiple orthogonal column and mobile phase choices across a far-reaching universal elution profile is also reported. The power of this framework is demonstrated with new analytical applications guiding academic and industrial laboratories in the development of new (bio)pharmaceutical targets (e.g. synthetic intermediates, nucleosides, cyclic and linear peptides, proteins, antibody drug conjugates).


Asunto(s)
Cromatografía , Proteínas , Proteínas/análisis , Péptidos , Agua/química , Nucleósidos
13.
Anal Chim Acta ; 1225: 340234, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36038238

RESUMEN

Peptide therapeutics are a growing modality in the pharmaceutical industry and expanding these therapeutics to hit intracellular targets would require establishing cell permeability. Rapid measurement target-agnostic cell permeability of peptides is still analytically challenging. In this study, we demonstrate the development of a rapid high-throughput label-free methodology based on a MALDI-hydrogen-deuterium exchange mass spectrometry (MALDI-HDX-MS) approach to rank-order peptide cell membrane permeability using live THP-1 and AsPc-1 cells. Peptides were incubated in the presence of live cells and their permeability into the cells over time was measured by MALDI-HDX-MS. A differential hydrogen-deuterium exchange approach was used to distinguish the peptides outside of the cells from those inside. The peptides on the outside of the cells were labeled using sufficiently short exposure to deuterium oxide, while the peptides inside of the cells were protected from labeling as a result of permeation into the cells. The deuterium labeled and peak area ratios of unlabeled peptides were compared and plotted over time. The developed methodology, referred to as Cell-based Approach Membrane Permeability Assay (CAMPA), was applied to study an array of 24 diverse peptides including cell-penetrating peptides, stapled and macrocyclic peptides. The cell membrane permeability results observed by CAMPA were corroborated by previously reported in literature data. The CAMPA MALDI-MS analysis was fully automated including MS data processing using internally developed Python scripts. Moreover, CAMPA was demonstrated to be useful for differentiating passive and active cell transportation by using an endocytosis inhibitor in cell incubation media for selected peptides.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Permeabilidad de la Membrana Celular , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Péptidos , Permeabilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
14.
Anal Chem ; 94(35): 12176-12184, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36001377

RESUMEN

Isolation and chemical characterization of target components in fast-paced pharmaceutical laboratories can often be challenging, especially when dealing with mixtures of closely related, possibly unstable species. Traditionally, this process involves intense labor and manual intervention including chromatographic method development and optimization, fraction collection, and drying processes prior to NMR analyses for unambiguous structure elucidation. To circumvent these challenges, a foundational framework for the proper utilization of supercritical carbon dioxide (scCO2) and deuterated modifiers (CD3OD) in sub/supercritical fluid chromatography (SFC) is herein introduced. This facilitates a streamlined multicomponent isolation with minimized protic residues, further enabling immediate NMR analysis. In addition to bypassing tedious drying processes and minimizing analyte degradation, this approach (complementary to traditional reversed-phase liquid chromatography, RPLC) delivers highly efficient separations and automated fraction collection using readily available analytical/midscale SFC instrumentation. A series of diverse analytes across a wide spectrum of chemical properties (acid, basic, and neutral), combined with different stationary-phase columns in SFC are investigated using both a protic organic modifier (CH3OH) and its deuterated counterpart (CD3OD). The power of this framework is demonstrated with pharmaceutically relevant applications in the context of target characterization and analysis of complex multicomponent reaction mixtures from modern synthetic chemistry, demonstrating high isolation yields while reducing both the environmental footprint and manual intervention. This workflow enables unambiguous fast-paced structure elucidation on the analytical scale, providing results that are comparable to traditional, but time-consuming, RPLC purification approaches.


Asunto(s)
Cromatografía con Fluido Supercrítico , Ácidos , Cromatografía de Fase Inversa , Cromatografía con Fluido Supercrítico/métodos
15.
J Chromatogr A ; 1676: 463282, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35785673

RESUMEN

The aim of this study was to evaluate the potential of ultra-high performance supercritical fluid chromatography (UHPSFC) for peptide analysis by comparing its analytical performance to several chromatographic approaches based on reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC) and mixed-mode liquid chromatography. First, the retention behavior of synthetic peptides with 3 to 30 amino acids and different isoelectric points (acid, neutral, and basic) was evaluated. For all the tested conditions (13 peptides in 8 conditions), only 4 results were not exploitable (not retained or not eluted), confirming that all the tested chromatographic conditions can be successfully applied when analyzing a wide range of diverse peptides. Average tailing factor were quite comparable across all chromatographic modes, while the best peak capacity values were obtained under mixed-mode LC conditions. Selectivity for each chromatographic mode was also evaluated for six closely related peptides having minor modifications on their structures. The LC-based chromatographic modes confirmed their superior selectivity over UHPSFC. By contrast, when analyzing short peptides (di- or tripetides), UHPSFC was the only technique allowing to simultaneously separate highly polar and less polar peptides within the same run confirming its unique versatility. In addition, the sensitivity of each chromatographic approach was accessed by for two representative peptides by both UV and MS detection. With UV detection, limit of detection (LOD) values were comparable among the different chromatographic modes, ranging from 0.5 to 2 µg mL-1. However, major differences were found when employing MS detection (LOD values ranged from 0.05 to 5 µg mL-1). The best results were obtained under HILIC conditions, followed by SFC, and finally mixed-mode LC and RPLC modes.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa , Cromatografía con Fluido Supercrítico/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos
16.
J Chromatogr A ; 1674: 463094, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609494

RESUMEN

Chiral sub/supercritical fluid chromatography (SFC) has established itself as one of the preferred techniques for enantioseparations at both analytical and preparative scale. Herein, we introduce a parallel multicolumn SFC screening for automated chiral method development in fast-paced settings. The practicality and speed advantages of this approach are illustrated with parallel screening of a diverse set of chiral molecules across ten columns with five different organic modifiers/CO2 based eluents enabling rapid identification of suitable enantioseparation conditions for accelerated purification of pharmaceutical targets. Rapid delivery turnarounds of pure enantiomers of less than 1 h from screening to target isolation are demonstrated illustrating the power of this approach.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Indicadores y Reactivos , Preparaciones Farmacéuticas , Estereoisomerismo
17.
Anal Bioanal Chem ; 414(12): 3581-3591, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35441858

RESUMEN

Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase's properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.


Asunto(s)
Productos Biológicos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/métodos , Péptidos , Proteínas/análisis
18.
Nature ; 603(7901): 439-444, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296845

RESUMEN

The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.


Asunto(s)
Guanosina , Nucleotidiltransferasas , Adenosina , Animales , Interferones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal
19.
Anal Chem ; 94(9): 4065-4071, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35199987

RESUMEN

Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious "hit-or-miss" experimentation and "blind" screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides).


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía Liquida/métodos , Preparaciones Farmacéuticas
20.
Angew Chem Int Ed Engl ; 61(21): e202117655, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35139257

RESUMEN

At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.


Asunto(s)
Productos Biológicos , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA