Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phenomics ; 3(5): 457-468, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881316

RESUMEN

Dermatomyositis (DM) is a heterogeneous autoimmune disease associated with numerous myositis specific antibodies (MSAs) in which DM with anti-melanoma differentiation-associated gene 5-positive (MDA5 + DM) is a unique subtype of DM with higher risk of developing varying degrees of Interstitial lung disease (ILD). Glycosylation is a complex posttranslational modification of proteins associated with many autoimmune diseases. However, the association of total plasma N-glycome (TPNG) and DM, especially MDA5 + DM, is still unknown. TPNG of 94 DM patients and 168 controls were analyzed by mass spectrometry with in-house reliable quantitative method called Bionic Glycome method. Logistic regression with age and sex adjusted was used to reveal the aberrant glycosylation of DM and the association of TPNG and MDA5 + DM with or without rapidly progressive ILD (RPILD). The elastic net model was used to evaluate performance of glycans in distinguishing RPLID from non-RPILD, and survival analysis was analyzed with N-glycoslyation score by Kaplan-Meier survival analysis. It was found that the plasma protein N-glycome in DM showed higher fucosylation and bisection, lower sialylation (α2,3- not α2,6-linked) and galactosylation than controls. In MDA5 + DM, more severe disease condition was associated with decreased sialylation (specifically α2,3-sialylation with fucosylation) while accompanying elevated H6N5S3 and H5N4FSx, decreased galactosylation and increased fucosylation and the complexity of N-glycans. Moreover, glycosylation traits have better discrimination ability to distinguish RPILD from non-RPILD with AUC 0.922 than clinical features and is MDA5-independent. Survival advantage accrued to MDA5 + DM with lower N-glycosylation score (p = 3e-04). Our study reveals the aberrant glycosylation of DM for the first time and indicated that glycosylation is associated with disease severity caused by ILD in MDA5 + DM, which might be considered as the potential biomarker for early diagnosis of RPILD and survival evaluation of MDA5 + DM. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00096-z.

2.
J Agric Food Chem ; 71(24): 9381-9390, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293923

RESUMEN

Chronic stress can cause intestinal barrier damage. MAPK and NF-κB are closely related to it. Chlorogenic acid (CGA), a dietary polyphenol, has been shown to have intestinal protective effects, but whether by regulating MAPK and NF-κB is not known. Therefore, in this experiment, 24 Wistar rats were randomly divided into 4 groups (C group, CS group, CS + SB203580, and CS + CGA group). Rats in the CS group were restrained stress for 6 h per day for 21 days. Rats in the CS + SB203580 group were given SB203582 (0.5 mg/kg, intraperitoneal injection) 1 h before restraint stress every other day. Rats in the CS + CGA group were given CGA (100 mg/kg, gavage) 1 h before restraint stress. In chronic stress, intestinal barrier damage was evident, while being restored after CGA treatment. After chronic stress, the levels of p-P38 were increased (P < 0.01), while the levels of p-JNK and p-ERK were not changed. The levels of p-p38 were elevated after CGA treatment (P < 0.01). These results suggested that p38MAPK played an important role in chronic stress-induced intestinal injury, and CGA could inhibit p38MAPK activity. Therefore, we chose SB203582 (P38MAPK inhibitor) to elucidate the role of p38. After chronic stress, intestinal tight junction key proteins Occludin, ZO-1, and Claudin3 protein and gene expression were reduced (P < 0.01), while being elevated after CGA or SB203582 intervention (P < 0.05). After CGA treatment, the levels of p-IκB, p-p65, p-p38, and TNF-α were reduced (P < 0.01). SB203582 intervention reduced p-p65 and TNF-α levels significantly (P < 0.01). These results suggested that CGA could inhibit the NF-κB pathway by suppressing p38MAPK, thereby alleviating chronic stress-induced intestinal damage.


Asunto(s)
Ácido Clorogénico , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Factor de Necrosis Tumoral alfa , Ratas Wistar
3.
Aging Cell ; 22(7): e13855, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37132100

RESUMEN

Caloric restriction (CR) can prolong life and ameliorate age-related diseases; thus, its molecular basis might provide new insights for finding biomarker and intervention for aging and age-related disease. Glycosylation is an important post-translational modification, which can timely reflect the changes of intracellular state. Serum N-glycosylation was found changed with aging in humans and mice. CR is widely accepted as an effective anti-aging intervention in mice and could affect mouse serum fucosylated N-glycans. However, the effect of CR on the level of global N-glycans remains unknown. In order to explore whether CR affect the level of global N-glycans, we performed a comprehensive serum glycome profiling in mice of 30% calorie restriction group and ad libitum group at 7 time points across 60 weeks by MALDI-TOF-MS. At each time point, the majority of glycans, including galactosylated and high mannose glycans, showed a consistent low level in CR group. Interestingly, O-acetylated sialoglycans presented an upward change different from other derived traits, which is mainly reflected in two biantennary α2,6-linked sialoglycans (H5N4Ge2Ac1, H5N4Ge2Ac2). Liver transcriptome analysis further revealed a decreased transcriptional level of genes involved in N-glycan biosynthesis while increased level of acetyl-CoA production. This finding is consistent with changes in serum N-glycans and O-acetylated sialic acids. Therefore, we provided one possible molecular basis for the beneficial effect of CR from N-glycosylation perspective.


Asunto(s)
Polisacáridos , Ácidos Siálicos , Humanos , Ratones , Animales , Glicosilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Biomarcadores
4.
Int J Cancer ; 152(3): 536-547, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121650

RESUMEN

Colorectal cancer (CRC) develops mainly from colorectal advanced adenomas (AA), which are considered precancerous lesions. Novel early diagnostic biomarkers are urgently needed to distinguish CRC and AA from healthy control (HC). Alternative glycosylation of serum IgG has been shown to be closely associated with CRC. We aimed to explore the potential of IgG N-glycan as biomarkers in the early differential diagnosis of CRC. The study population was strictly matched to the exclusion criteria process. Serum IgG N-glycan profiles were analyzed by a robust and reliable relative quantitative method based on ultra-performance liquid chromatography (UPLC). Relative quantification and classification performance of IgG N-glycans were evaluated by Mann-Whitney U tests and ROC curve based on directly detected and derived glycan traits, respectively. Six and 14 directly detected glycan traits were significantly changed in AA and CRC, respectively, compared with HC. GP1 and GP3 were able to accurately distinguish AA from HC for early precancerous lesions screening. GP4 and GP14 provided a high value in discriminating CRC from HC. A novel combined index named GlycoF, including GP1, GP3, GP4, GP14 and CEA was developed to provide a potential early diagnostic biomarker in discriminating simultaneously AA (AUC = 0.847) and CRC (AUC = 0.844) from HC. GlycoF also demonstrated a superior CRC detection rate across CRC all stages and conspicuous prediction ability of risk of relapse. Serum IgG N-glycans analysis provided powerful early screening biomarkers that can efficiently differentiate CRC and AA from HC.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Lesiones Precancerosas , Humanos , Biomarcadores de Tumor , Recurrencia Local de Neoplasia/diagnóstico , Neoplasias Colorrectales/patología , Polisacáridos , Detección Precoz del Cáncer/métodos , Inmunoglobulina G , Lesiones Precancerosas/diagnóstico
5.
J Proteomics ; 268: 104717, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36084919

RESUMEN

IgG N-glycans levels change with advancing age, making it a potential biomarker of aging. ß-1,4-galactosyltransferase (B4GALT) gene expression levels also increase with aging. Ultra performance liquid chromatography (UPLC) was used to examine changes inserum IgG N-glycans at six time points during the aging process. Most serum IgG N-glycans changed with aging in WT but not in CD19-cre B4GALT1 floxed mice. The relative abundance of fucosylated biantennary glycans with or without Neu5Gc structures changed with aging in heterozygous B4GALT1 floxed mice but not in homozygous B4GALT1 floxed mice. Additionally, the aging phenotype was more apparent in WT mice than in B4GALT1 floxed mice. These results demonstrate that fucosylated biantennary glycans and fucosylated biantennary glycans containing N-glycolylneuraminic acid (Neu5Gc)-linked N-acetyllactosamine (LacNAc) were highly associated with aging and were affected by the B4GALT1 floxed mouse genotype. The changing levels of fucosylated monoantennary glycans observed with aging in WT mice was reversed in B4GALT1 floxed mice and was not sex specific. In summary, B-cell-specific ablation of B4GALT1 from a glycoproteomic perspective prevented age-related changes in IgG N-glycans in mice. SIGNIFICANCE: In this study, serum IgG glycoproteomic data in wild-type (WT) and B-cell-specific ablation of ß-1,4-galactosyltransferase 1 mice (B4GALT) were analyzed. Results showed that fucosylated biantennary glycans with or without N-glycolylneuraminic acid (Neu5Gc)-linked N-acetyllactosamine (LacNAc) were highly associated with aging and were also affected by the B4GALT1 floxed mouse genotype. In terms of gender-specific information, the trend towards elevated fucosylated monoantennary glycans in WT mice was not seen in CD19-cre B4GALT1 floxed mice in either sex. B-cell-specific ablation of B4GALT1 plays an important role in age-related glycan changes; its specific functions and mechanisms are worthy of in-depth study. Our data suggest that investigating the relationship between galactosylation and aging may help advance the field of glycoproteomics and aging research.


Asunto(s)
Envejecimiento , Inmunoglobulina G , N-Acetil-Lactosamina Sintasa , Polisacáridos , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Linfocitos B/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Ratones , N-Acetil-Lactosamina Sintasa/genética , N-Acetil-Lactosamina Sintasa/metabolismo , Ácidos Neuramínicos , Fenotipo , Polisacáridos/química
6.
Cancers (Basel) ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35267641

RESUMEN

Serum immunoglobulin G (IgG) glycosylation, especially galactosylation, has been found to be related to a variety of tumors, including hepatocellular carcinoma (HCC). However, whether IgG glycan changes occur in the early stages of HCC formation remains unclear. We found that the galactosylation level increased and that the related individual glycans showed regular changes over the course of HCC induction. Then, the effect of the B-cell-specific ablation of ß1,4galactosyltransferase 1 (CKO B4GALT1) and B4GALT1 defects on the IgG glycans that were modified during the model induction process and HCC formation is investigated in this study. CKO B4GALT1 reduces serum IgG galactosylation levels and reduces cancer formation. Furthermore, insignificant changes in the B-cell B4GALT1 and unchanged serum IgG galactosylation levels were found during cancer induction in female mice, which might contribute to the lower cancer incidence in female mice than in male mice. The gender differences observed during glycan and B4GALT1 modification also add more evidence that the B4GALT1 in B cells and in serum IgG galactosylation may play an important role in HCC. Therefore, the findings of the present research can be used to determine the methods for the early detection of HCC as well as for prevention.

7.
Am J Cancer Res ; 11(6): 3002-3020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249441

RESUMEN

Colorectal cancer (CRC), one of the major health problems worldwide, mostly develops from colorectal adenomas. Advanced adenomas are generally considered as precancerous lesions and patients are recommended to remove the adenomas. Screening for colorectal cancer is usually performed by fecal tests (FOBT or FIT) and colonoscopy, however, their benefits are limited by uptake and adherence. Most CRC develops from colorectal advanced adenomas, but there is currently a lack of effective noninvasive screening method for advanced adenomas. N-glycans in human serum hold the great potentials as biomarker for diagnosis of human cancers. Our aim was to discover blood-based markers for screening and diagnosis of advanced adenomas and CRC, and to ascertain their efficiency in classifying healthy controls, patients with advanced adenomas and CRC by incorporating machine learning techniques with reliable and simple quantitative method with "Bionic Glycome" as internal standard based on the high-throughput Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). The quantitative results showed that there is a positive correlation between multi-antennary, sialylated N-glycans and CRC progress, while bi-antennary core-fucosylated N-glycans are negatively correlated with CRC progress. Machine learning is a powerful classification tool, suitable for mining big data, especially the large amount of data generated by high-throughput technologies. Using the predictive model constructed by machine learning, we obtained the classification accuracy of 75% for classification of 189 samples including CRC, advanced adenomas and healthy controls, and the accuracy of 87% for detection of the disease group that required treatment, including CRC and advanced adenomas. To our delight, the model successfully applied to the prediction of 176 samples collected a few months later, and five samples were wrongly predicted in the disease group. Overall, this diagnostic model we constructed here has valuable potential in the clinical application of detecting advanced adenomas and colorectal cancer and could compensate for the limitations of the current screening methods for detection of CRC and advanced adenomas.

8.
Exp Gerontol ; 141: 111098, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33010330

RESUMEN

Studying the changes of serum N-glycome during mouse aging is beneficial to explore the molecular basis behind the alterations reported in human. However, such studies remainscarce and lack some information such as sialylation due to the method limitation. Here, we introduced Bionic Glycome method to quantify the serum N-glycome changes during C57BL/6 mouse aging (from the pubertal period to the old age stage). This technique enabled reliable and comprehensive quantitation of the expression level changes of more than 20 N-glycans in mouse serum at 12 time points in both genders for the first time, involving the analysis of sialic acid and its different linkages. The results demonstrated that the expression level of total glycans increased from middle age to old age. Interestingly, sex-specific N-glycome profiles and alterations were observed. Female mice showed higher level of serum fucosylation and lower level of serum afucosylation than male mice (fucosylation: p < 1.0E-6; afucosylation: p < 1.0E-6). Obviously, higher increase of serum fucosylation level was found in female mice than in male mice from middle age to old age. In addition, the opposite alterations of the afucosylated glycans with α2,3-linked sialic acid and those only with α2,6-linked sialic acid were observed at old age in male mice. These findings suggested that N-glycome could be a valuable target for investigating aging and possible contributors to aging.


Asunto(s)
Biónica , Polisacáridos , Envejecimiento , Animales , Femenino , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL
9.
J Proteomics ; 229: 103966, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32891889

RESUMEN

N-glycosylation of immunoglobulin G (IgG) has been reported to change in human aging and in some age-related diseases. To further understand the molecular processes that determine these alterations, a detailed examination of individual IgG N-glycans with aging remains required. Mouse is the most commonly used model animal in studies of aging and age-related diseases, and mice have the advantage of relatively controllable genetic and environment variations compared to human. In this study, we systemically investigated the changes in serum IgG N-glycome in C57BL/6 mice during aging at 12 time points (6-80 weeks) via ultraperformance liquid chromatography with fluorescence detection. The study demonstrated several important findings. First, four chromatographic IgG N-glycan peaks were identified for the first time, including a high-mannose glycan, a monoantennary glycan, and two afucosylated glycans. Second, most of the IgG glycan levels changed significantly and presented pronounced gender-related differences from 6 to 12 weeks. Interestingly, all the IgG glycan levels tended to be similar between male and female mice at 12 weeks. Third, the level of fucosylated diantennary glycans containing one N-glycolylneuraminic acid (Neu5Gc)-linked N-acetyllactosamine (LacNAc) decreased gradually and showed a significant negative correlation with age from 24 to 80 weeks (r = -0.716, p < 0.0001), which was not sex-specific. SIGNIFICANCE: More comprehensive profile of murine IgG N-glycans by ultraperformance liquid chromatography with fluorescence detection was shown in this study with four newly identified chromatographic murine IgG N-glycan peaks. The majority of IgG N-glycans showed substantial stage-specific changes and sex-related differences during mouse aging, indicating a strict regulatory mechanism of glycan synthesis. The level of fucosylated diantennary glycans containing one Neu5Gc-linked LacNAc was significantly negatively correlated with age from 24 to 80 weeks, suggesting its great potential as an aging biomarker. The detailed characteristics of IgG N-glycosylation with aging in C57BL/6 mice demonstrated in the present study could provide essential reference data for studying the function and mechanism of IgG glycosylation in age-related researches based on C57BL/6 mouse models.


Asunto(s)
Inmunoglobulina G , Polisacáridos , Envejecimiento , Amino Azúcares , Animales , Femenino , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Biochim Biophys Acta Gen Subj ; 1864(10): 129668, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32553689

RESUMEN

BACKGROUND: Alternative glycosylation of serum IgG has been shown to be closely associated with colorectal cancer (CRC). Currently, a dynamic study which can not only minimize the influence of genetic background, environment and other interfering factors during cancer development, but also focus on investigating carcinogenic characteristics of IgG glycan is lacking. METHODS: Serum IgG N-glycans were characterized at four stages of CRC development by ultra-performance liquid chromatography in a typical colitis-related CRC mouse model induced by azoxymethane-dextran sodium sulfate. Furthermore, the expression of related glycosyltransferases in splenic B lymphocytes at the corresponding time was also assessed. RESULTS: The relative abundance of seven IgG glycans, which can be classified as monoantennary, core fucose, sialic acid, galactose and bisecting, was changed during tumor growth. The abundance of some glycans was altered during the first stage of cancer induction. Correspondingly, the expression of glycosyltransferases in splenic B lymphocytes and different tissues in cancer groups was also decreased compared to that in controls. CONCLUSIONS: This study represents the comprehensive analysis of IgG glycosylation in the dynamic process of colitis-associated CRC. To our knowledge, this is the first report that the expression of glycosyltransferases in mouse splenic B lymphocytes is consistent or inconsistent with the alterations of IgG N-glycans, and the variation tendency is tissue nonspecific. GENERAL SIGNIFICANCE: Providing a novel approach to identify the IgG glycans related to the development of CRC and laying a foundation for research on structure and function of glycans using mouse.


Asunto(s)
Colitis/sangre , Neoplasias Colorrectales/sangre , Inmunoglobulina G/sangre , Polisacáridos/análisis , Animales , Colitis/complicaciones , Colitis/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Glicómica , Glicosilación , Inmunoglobulina G/análisis , Ratones , Polisacáridos/sangre
11.
Front Pharmacol ; 11: 128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158395

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is often secondary to sepsis. Previous studies suggest that damaged mitochondria and the inhibition of autophagy results in AKI during sepsis, but dexmedetomidine (DEX) alleviates lipopolysaccharide (LPS)-induced AKI. However, it is uncertain whether the renoprotection of DEX is related to autophagy or the clearance of damaged mitochondria in sepsis-induced AKI. METHODS: In this study, AKI was induced in rats by injecting 10 mg/kg of LPS intraperitoneally (i.p.). The rats were also pretreated with DEX (30 µg/kg, i.p.) 30 min before the injection of LPS. The structure and function of kidneys harvested from the rats were evaluated, and the protein levels of autophagy-related proteins, oxidative stress levels, and apoptosis levels were measured. Further, atipamezole (Atip) and 3-Methyladenine (3-MA), which are inhibitors of DEX and autophagy, respectively, were administered before the injection of DEX to examine the protective mechanism of DEX. RESULTS: Pretreatment with DEX ameliorated kidney structure and function. DEX decreased the levels of blood urea nitrogen (BUN) and creatinine (Cre), urine kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), reactive oxygen species (ROS), and apoptosis proteins (such as cleaved caspase-9 and cleaved caspase-3). However, DEX upregulated the levels of autophagy and mitophagy proteins, such as Beclin-1, LC3 II and PINK1. These results suggest that DEX ameliorated LPS-induced AKI by reducing oxidative stress and apoptosis and enhancing autophagy. To promote autophagy, DEX inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Furthermore, the administration of Atip and 3-MA inhibitors blocked the renoprotection effects of DEX. CONCLUSIONS: Here, we demonstrate a novel mechanism in which DEX protects against LPS-induced AKI. DEX enhances autophagy, which results in the removal of damaged mitochondria and reduces oxidative stress and apoptosis in LPS-induced AKI through the α2-AR and inhibition of the PI3K/AKT/mTOR pathway.

12.
Int Immunopharmacol ; 74: 105717, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254953

RESUMEN

Acute lung injury (ALI) is a serious complication of sepsis and an important cause of death in intensive care. Studies have shown that DEX can inhibit inflammation. However, the anti-inflammatory effect and protective mechanism of DEX in lipopolysaccharide (LPS) induced ALI are still unclear. ALI model was established by intraperitoneal injection of LPS (10 mg/kg) in Sprague-Dawley (SD) male rats. Firstly, at 4, 6, 8, 12 and 24 h after LPS treatment, lung injury including pathologic histology, lung edema, and inflammation were detected. The optimal time point for lung injury was determined to be 12 h, at which time DEX was added to further test. Furthermore, STAT3 inhibitor (NSC74859) and GSK-3ß inhibitor (SB216763) were added to verify the role of STAT3, GSK-3ß and NF-κB in ameliorated ALI. Our results show that DEX pretreatment significantly decreased lung Wet-to-Dry weight (W/D) ratio and MPO activity and ameliorated LPS induced lung histopathological alterations. In addition, we confirmed that DEX can increased the phosphorylation of STAT3 and GSK-3ß, and inhibit the phosphorylation of nuclear factor-κB (NF-κB) p65 in the inflammatory response induced by LPS. What's more, NSC74859 inhibited the phosphorylation of STAT3 and reversed the protect effect of DEX on LPS. SB216763 inhibited the phosphorylation of NF-κB and reversed the damage effect of LPS and plays the same anti-inflammatory effect as DEX. In summary, our data demonstrated that DEX can ameliorate ALI induced by LPS through GSK-3ß/STAT3-NF-κB pathway.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Dexmedetomidina/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
13.
J Cell Physiol ; 234(8): 14068-14078, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618065

RESUMEN

Acute stress is a frequent and unpredictable disease for many animals. Stress is widely considered to affect liver function. However, the underlying mechanism by which dexmedetomidine (DEX) attenuates acute stress-induced liver injury in rats remains unclear. In this study, we used forced swimming for 15 min and acute 3-hr restraint stress model. Behavioral tests and changes in norepinephrine levels confirmed the successful establishment of the acute stress model. Acute stress-induced liver injury, evidenced by hematoxylin and eosin-stained pathological sections and increased serum aminotransferase and aspartate aminotransferase levels, was reduced in DEX-treated livers. Reactive oxygen species and oxidative stress levels were dramatically decreased with DEX treatment compared with acute stress-induced liver injury. DEX significantly reduced acute stress-induced liver inflammation and apoptosis, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and inflammation and apoptosis-related protein levels. DEX treatment also effectively inhibited acute stress-induced c-Jun N-terminal kinase (JNK), P38, and BAD signaling pathway activation, and significantly induced MKP-1 activation. Thus, DEX has a protective effect on acute-stress-induced liver injury by reducing inflammation and apoptosis, which suggests a potential clinical application for DEX in stress syndrome.


Asunto(s)
Apoptosis/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/genética , Inflamación/tratamiento farmacológico , Hígado/lesiones , Animales , Conducta Animal , Dexmedetomidina/farmacología , Humanos , Inflamación/genética , Inflamación/patología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/genética , Proteína Letal Asociada a bcl/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
14.
Toxicol Appl Pharmacol ; 364: 144-152, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597158

RESUMEN

Dexmedetomidine (DEX) protects against liver damage caused by sepsis. The purpose of this study was to confirm the regulatory effects of DEX on glycogen synthase kinase 3 beta (GSK-3ß) via the α2 adrenergic receptor (α2AR) and evaluate the role of GSK-3ß in lipopolysaccharide (LPS)-induced liver injury. Sprague-Dawley (SD) rats were administered an intraperitoneal injection of DEX (30 µg/kg) 30 min before an intraperitoneal injection of LPS (10 mg/kg). HE staining and serum biochemical test results indicated that DEX significantly improved liver histopathological damage and liver function indices. Furthermore, DEX increased super oxide dismutase (SOD) activity and L-glutathione (GSH) levels, and inhibited malondialdehyde (MDA) production. Western blot (WB) analysis demonstrated that treatment with the GSK-3ß inhibitor SB216763 increased antioxidant-related protein mitogen-activated protein kinase phosphatase 1 (MKP-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. In addition, anti-apoptosis-related proteins were up-regulated and pro-apoptosis-related proteins were down-regulated by SB21676 administration. WB analysis also showed that DEX increased anti-apoptosis-related protein levels and decreased pro-apoptotic protein levels in LPS-induced liver injury. Nrf2, p53, and activated caspase-3 levels were further evaluated using immunohistochemistry (IHC), producing results consistent with WB results. The α2AR antagonist atipamezole (AT) significantly reversed the protective effects of DEX, as shown by WB analysis. Our data suggested that α2AR plays an important role in reversing the effects of liver oxidative stress and apoptosis via DEX, and that DEX exerts antioxidant and anti-apoptosis effects through regulation of the GSK-3ß/MKP-1/Nrf2 pathway.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Dexmedetomidina/farmacología , Fosfatasa 1 de Especificidad Dual/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lipopolisacáridos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citoprotección , Modelos Animales de Enfermedad , Hígado/enzimología , Hígado/patología , Masculino , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Oxid Med Cell Longev ; 2018: 4035310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250633

RESUMEN

Acute stress induces tissue damage through excessive oxidative stress. Dexmedetomidine (DEX) reportedly has an antioxidant effect. However, protective roles and related potential molecular mechanisms of DEX against kidney injury induced by acute stress are unknown. Herein, rats were forced to swim 15 min followed by restraint stress for 3 h with/without DEX (30 µg/kg). Successful model establishment was validated by an open-field test. Assessment of renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde, glutathione, and superoxide dismutase), and apoptosis (transferase-mediated dUTP nick end labeling) was performed. Localization of apoptosis was determined by immunohistochemistry of cleaved caspase 3 protein. In addition, key proteins of the death receptor-mediated pathway, mitochondrial pathway, endoplasmic reticulum stress (ERS) pathway, and ROS/JNK signaling pathway were measured by Western blot. We found that DEX significantly improved renal dysfunction, ameliorated kidney injury, reduced oxidative stress, and alleviated apoptosis. DEX also inhibited the release of norepinephrine (NE), decreased the production of reactive oxygen species (ROS), and inhibited JNK phosphorylation. Additionally, DEX downregulated the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3 proteins in mitochondria-dependent pathways. In summary, DEX protects against acute stress-induced kidney injury in rats by reducing oxidative stress and apoptosis via inhibition of the ROS/JNK pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Dexmedetomidina/farmacología , Riñón/lesiones , Riñón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Psicológico/complicaciones , Animales , Dexmedetomidina/uso terapéutico , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/fisiopatología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Norepinefrina/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA