Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ASN Neuro ; 16(1): 2404366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39400556

RESUMEN

Magnetic Resonance Imaging (MRI) is commonly used to follow the progression of neurodegenerative conditions, including multiple sclerosis (MS). MRI is limited by a lack of correlation between imaging results and clinical presentations, referred to as the clinico-radiological paradox. Animal models are commonly used to mimic the progression of human neurodegeneration and as a tool to help resolve the paradox. Most studies focus on later stages of white matter (WM) damage whereas few focus on early stages when oligodendrocyte apoptosis has just begun. The current project focused on these time points, namely weeks 2 and 3 of cuprizone (CPZ) administration, a toxin which induces pathophysiology similar to MS. In vivo T2-weighted (T2W) and Magnetization Transfer Ratio (MTR) maps and ex vivo Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and relaxometry (T1 and T2) values were obtained at 7 T. Significant changes in T2W signal intensity and non-significant changes in MTR were observed to correspond to early WM damage, whereas significant changes in both corresponded with full demyelination. Some DTI metrics decrease with simultaneous increase in others, indicating acute demyelination. MTI metrics T2A, T2B, f and R were observed to have contradictory changes across CPZ administration. T1 relaxation times were observed to have stronger correlations to disease states during later stages of CPZ treatment, whereas T2 had weak correlations to early WM damage. These results all suggest the need for multiple metrics and further studies at early and late time points of demyelination. Further research is required to continue investigating the interplay between various MR metrics during all weeks of CPZ administration.


Multiparametric MRI studies are critical to further our understanding of demyelination and neurodegeneration. Our focus on early time points in cuprizone administration illustrated the dependence of MR metrics on early compared to late changes in tissue pathophysiology.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sustancia Blanca , Animales , Cuprizona/toxicidad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Ratones , Imagen de Difusión Tensora/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Masculino , Imagen por Resonancia Magnética/métodos , Femenino
2.
Neuroinformatics ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312131

RESUMEN

Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.

3.
MAGMA ; 37(5): 765-790, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38635150

RESUMEN

Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Cuprizona/toxicidad , Animales , Ratones , Imagen por Resonancia Magnética/métodos , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/inducido químicamente , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inducido químicamente , Vaina de Mielina , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/inducido químicamente , Humanos , Sensibilidad y Especificidad
4.
NMR Biomed ; 37(4): e5087, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168082

RESUMEN

The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Axones/patología , Imagen por Resonancia Magnética , Microscopía Electrónica
5.
IEEE Robot Autom Lett ; 8(9): 5345-5352, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37614723

RESUMEN

Minimally invasive endovascular procedures involve the manual placement of a guidewire, which is made difficult by vascular tortuosity and the lack of precise tip control. Steerable guidewire systems have been developed with tendon-driven, magnetic, and concentric tube actuation strategies to enable precise tip control, however, selecting machining parameters for such robots does not have a strict procedure. In this paper, we develop a systematic design procedure for selecting the tube pairs of the COaxially Aligned STeerable (COAST) guidewire robot. This includes the introduction of a mechanical model that accounts for micromachining-induced pre-curvatures with the goal of determining design parameters that reduce combined distal tip pre-curvature and minimize abrupt changes in actuated tip position for the COAST guidewire robot through selection of the best flexural rigidity between the tube pairs. We present adjustments in the kinematics modeling of COAST robot tip bending motion, and use these to characterize the bending behavior of the COAST robot for varying geometries of the micromachined tubes, with an average RMSE value for the tip position error of 0.816 mm in the validation study.

6.
bioRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131702

RESUMEN

We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b, where the deviation from the 1/b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.

7.
Magn Reson Imaging ; 85: 64-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662703

RESUMEN

Previous methods used to infer axon diameter distributions using magnetic resonance imaging (MRI) primarily use single diffusion encoding sequences such as pulsed gradient spin echo (PGSE) and are thus sensitive to axons of diameters >5 µm. We applied oscillating gradient spin echo (OGSE) sequences to study human axons in the 1-2 µm range in the corpus callosum, which include the majority of axons constituting cortical connections. The ActiveAx model was applied to calculate the fitted mean effective diameter for axons (AxD) and was compared with values found using histology. Axon diameters from histological data were calculated using three different datasets; true diameters (minimum diameter), a combination of minimum and maximum diameters, and diameters measured across a consistent diffusion direction. The AxD estimates from MRI were 1.8 ± 0.1 µm to 2.34 ± 0.04 µm with an average of 2.0 ± 0.2 µm for the ActiveAx model. The histology AxD values were 1.43 ± 0.02 µm when using the true minimum axon diameters, 5.52 ± 0.02 µm when using the combination of minimum and maximum axon diameters, and 2.20 ± 0.02 µm when collecting measurements across a consistent diffusion direction. This experiment demonstrates the first known usage of OGSE to calculate axon diameters in the human corpus callosum on a 1-2 µm scale. The importance for the model to account for axonal orientation dispersion is indicated by histological results which more closely match the MRI model results depending on the direction of axon diameter measurements. These initial steps using this non-invasive imaging method can be applied to future methodology to develop in vivo axon diameter measurements in human brain tissue.


Asunto(s)
Cuerpo Calloso , Imagen de Difusión por Resonancia Magnética , Axones/patología , Encéfalo , Cuerpo Calloso/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA