Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Microbiol Spectr ; 12(3): e0499822, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334387

RESUMEN

Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , Mesocricetus , Nanovacunas , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
J Trauma Acute Care Surg ; 96(2): 276-286, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335129

RESUMEN

BACKGROUND: Activated protein C (APC) is one of the mechanisms contributing to coagulopathy, which is associated with high mortality. The counteraction of the APC pathway could help ameliorate bleeding. However, patients also transform frequently from a hemorrhagic state to a prothrombotic state at a later time. Therefore, a prohemostatic therapeutic intervention should take this thrombotic risk into consideration. OBJECTIVES: CT-001 is a novel factor VIIa (FVIIa) with enhanced activity and desialylated N-glycans for rapid clearance. We assessed CT-001 clearance in multiple species and its ability to reverse APC-mediated coagulopathic blood loss. METHODS: The N-glycans on CT-001 were characterized by liquid chromatography-mass spectrometry. Three species were used to evaluate the pharmacokinetics of the molecule. The potency and efficacy of CT-001 under APC pathway-induced coagulopathic conditions were assessed by coagulation assays and bleeding models. RESULTS: The N-glycosylation sites of CT-001 had high occupancy of desialylated N-glycans. CT-001 exhibited 5 to 16 times higher plasma clearance in human tissue factor knockin mice, rats, and cynomolgus monkeys than wildtype FVIIa. CT-001 corrected the activated partial thromboplastin time and thrombin generation of coagulopathic plasma to normal in in vitro studies. In an APC-mediated saphenous vein bleeding model, 3 mg/kg of CT-001 reduced bleeding time in comparison with wildtype FVIIa. The correction of bleeding by CT-001 was also observed in a coagulopathic tail amputation severe hemorrhage mouse model. The efficacy of CT-001 is independent of the presence of tranexamic acid, and the combination of CT-001 and tranexamic acid does not lead to increased thrombogenicity. CONCLUSION: CT-001 corrected APC pathway-mediated coagulopathic conditions in preclinical studies and could be a potentially safe and effective procoagulant agent for addressing APC-mediated bleeding.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Ácido Tranexámico , Humanos , Ratones , Ratas , Animales , Proteína C/farmacología , Proteína C/uso terapéutico , Ácido Tranexámico/uso terapéutico , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Trastornos de la Coagulación Sanguínea/etiología , Hemostasis , Hemorragia , Factor VIIa/uso terapéutico , Factor VIIa/farmacología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Tomografía Computarizada por Rayos X
3.
Blood Adv ; 8(2): 287-295, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38039512

RESUMEN

ABSTRACT: The hemostatic system is upregulated to protect pregnant mothers from hemorrhage during childbirth. Studies of the details just before and after delivery, however, are lacking. Recombinant factor VIIa (rFVIIa) has recently been granted approval by the European Medicines Agency for the treatment of postpartum hemorrhage (PPH). A next-generation molecule, CT-001, is being developed as a potentially safer and more efficacious rFVIIa-based therapy. We sought to evaluate the peripartum hemostatic status of pregnant women and assess the ex vivo hemostatic activity of rFVIIa and CT-001 in peripartum blood samples. Pregnant women from 2 study sites were enrolled in this prospective observational study. Baseline blood samples were collected up to 3 days before delivery. Postdelivery samples were collected 45 (±15) minutes after delivery. Between the 2 time points, soluble fibrin monomer and D-dimer increased whereas tissue factor, FVIII, FV, and fibrinogen decreased. Interestingly, the postdelivery lag time and time to peak in the thrombin generation assay were shortened, and the peak thrombin generation capacity was maintained despite the reduced levels of coagulation proteins after delivery. Furthermore, both rFVIIa and CT-001 were effective in enhancing clotting activity of postdelivery samples in activated partial thromboplastin time, prothrombin time, thrombin generation, and viscoelastic hemostatic assays, with CT-001 demonstrating greater activity. In conclusion, despite apparent ongoing consumption of coagulation factors at the time of delivery, thrombin output was maintained. Both rFVIIa and CT-001 enhanced the upregulated hemostatic activity in postdelivery samples, and consistent with previous studies comparing CT-001 and rFVIIa in vitro and in in vivo, CT-001 demonstrated greater activity than rFVIIa.


Asunto(s)
Hemostáticos , Hemorragia Posparto , Femenino , Humanos , Embarazo , Factores de Coagulación Sanguínea , Factor VIIa/farmacología , Hemostáticos/farmacología , Periodo Posparto , Trombina , Tomografía Computarizada por Rayos X
4.
Blood Adv ; 7(13): 3036-3048, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36735416

RESUMEN

Activated protein C (APC) is a pleiotropic coagulation protease with anticoagulant, anti-inflammatory, and cytoprotective activities. Selective modulation of these APC activities contributes to our understanding of the regulation of these physiological mechanisms and permits the development of therapeutics for the pathologies associated with these pathways. An antibody library targeting the nonactive site of APC was generated using llama antibodies (nanobodies). Twenty-one nanobodies were identified that selectively recognize APC compared with the protein C zymogen. Overall, 3 clusters of nanobodies were identified based on the competition for APC in biolayer interferometry studies. APC functional assays for anticoagulant activity, histone H3 cleavage, and protease-activated receptor 1 (PAR1) cleavage were used to understand their diversity. These functional assays revealed 13 novel nanobody-induced APC activity profiles via the selective modulation of APC pleiotropic activities, with the potential to regulate specific mechanisms for therapeutic purposes. Within these, 3 nanobodies (LP2, LP8, and LP17) inhibited all 3 APC functions. Four nanobodies (LP1, LP5, LP16, and LP20) inhibited only 2 of the 3 functions. Monofunction inhibition specific to APC anticoagulation activity was observed only by 2 nanobodies (LP9 and LP11). LP11 was also found to shift the ratio of APC cleavage of PAR1 at R46 relative to R41, which results in APC-mediated biased PAR1 signaling and APC cytoprotective effects. Thus, LP11 has an activity profile that could potentially promote hemostasis and cytoprotection in bleedings associated with hemophilia or coagulopathy by selectively modulating APC anticoagulation and PAR1 cleavage profile.


Asunto(s)
Proteína C , Anticuerpos de Dominio Único , Proteína C/metabolismo , Receptor PAR-1/química , Receptor PAR-1/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/metabolismo , Células Endoteliales/metabolismo , Anticoagulantes/farmacología , Anticuerpos/farmacología
5.
J Virol ; 96(20): e0088622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197107

RESUMEN

To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.


Asunto(s)
Myxoma virus , Mixomatosis Infecciosa , Animales , Conejos , Virulencia/genética , Australia , Fenotipo , Genotipo , Mixomatosis Infecciosa/genética
6.
Evol Med Public Health ; 10(1): 439-446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118914

RESUMEN

Background and objectives: Previously, we showed proof-of-concept in a mouse model that oral administration of cholestyramine prevented enrichment of daptomycin-resistant Enterococcus faecium in the gastrointestinal (GI) tract during daptomycin therapy. Cholestyramine binds daptomycin in the gut, which removes daptomycin selection pressure and so prevents the enrichment of resistant clones. Here, we investigated two open questions related to this approach: (i) can cholestyramine prevent the enrichment of diverse daptomycin mutations emerging de novo in the gut? and (ii) how does the timing of cholestyramine administration impact its ability to suppress resistance? Methodology: Mice with GI E. faecium were treated with daptomycin with or without cholestyramine, and E. faecium was cultured from feces to measure changes in daptomycin susceptibility. A subset of clones was sequenced to investigate the genomic basis of daptomycin resistance. Results: Cholestyramine prevented the enrichment of diverse resistance mutations that emerged de novo in daptomycin-treated mice. Whole-genome sequencing revealed that resistance emerged through multiple genetic pathways, with most candidate resistance mutations observed in the clsA gene. In addition, we observed that cholestyramine was most effective when administration started prior to the first dose of daptomycin. However, beginning cholestyramine after the first daptomycin dose reduced the frequency of resistant E. faecium compared to not using cholestyramine at all. Conclusions and implications: Cholestyramine prevented the enrichment of diverse daptomycin-resistance mutations in intestinal E. faecium populations during daptomycin treatment, and it is a promising tool for managing the transmission of daptomycin-resistant E. faecium.

7.
Thromb Res ; 215: 58-66, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640516

RESUMEN

INTRODUCTION: Acute bleeding leads to significant morbidity and mortality. Recombinant wildtype Factor VIIa (WT FVIIa) had been reported to have some therapeutic effects in some clinical trials, however, its use was associated with thromboembolic events. We sought to develop a novel FVIIa molecule (CT-001) with enhanced activity and lowered thrombogenicity risk. METHODS AND METHODS: CT-001 has 4 N-glycans (T106N/N145/V253N/N322) with terminal sialic acid residues removed to promote active clearance via the asialoglycoprotein receptor, and P10Q/K32E substitutions introduced to its gamma-carboxyglutamic acid (Gla) domain for enhanced phospholipid affinity and activity. RESULTS: In mice, CT-001 had a half-life of 5 min and a clearance of 467 mL/h/kg at 3 mg/kg, significantly faster than WT FVIIa (t1/2 = 1.8 h, Cl = 39 mL/h/kg). Interestingly, CT-001 was efficacious in reducing blood loss even with its rapid clearance. In a severe hemorrhage mouse model with tail amputated 5 cm from the tip, 1 mg/kg CT-001 provided efficacy comparable to 3 mg/kg WT FVIIa. The fast clearance of CT-001 resulted in significantly reduced thrombogenicity in comparison to WT FVIIa in a FeCl3-induced carotid artery thrombosis mouse model, and further confirmed in a soluble tissue factor-induced thrombosis model. CONCLUSIONS: The data on CT-001 demonstrate that a short duration of highly active FVIIa procoagulant activity has the potential to be an optimal paradigm for the treatment of acute bleeds.


Asunto(s)
Factor VIIa , Hemostáticos , Animales , Modelos Animales de Enfermedad , Factor VIIa/farmacología , Factor VIIa/uso terapéutico , Hemorragia/tratamiento farmacológico , Humanos , Ratones , Tromboplastina , Tomografía Computarizada por Rayos X
8.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732575

RESUMEN

Triplex gene editing relies on binding a stable peptide nucleic acid (PNA) sequence to a chromosomal target, which alters the helical structure of DNA to stimulate site-specific recombination with a single-strand DNA (ssDNA) donor template and elicits gene correction. Here, we assessed whether the codelivery of PNA and donor template encapsulated in Poly Lactic-co-Glycolic Acid (PLGA)-based nanoparticles can correct sickle cell disease and x-linked severe combined immunodeficiency. However, through this process we have identified a false-positive PCR artifact due to the intrinsic capability of PNAs to aggregate with ssDNA donor templates. Here, we show that the combination of PNA and donor templates but not either agent alone results in different degrees of aggregation that result in varying but highly reproducible levels of false-positive signal. We have identified this phenomenon in vitro and confirmed that the PNA sequences producing the highest supposed correction in vitro are not active in vivo in both disease models, which highlights the importance of interrogating and eliminating carryover of ssDNA donor templates in assessing various gene editing technologies such as PNA-mediated gene editing.


Asunto(s)
Edición Génica/métodos , Anemia de Células Falciformes/genética , Animales , Reacciones Falso Positivas , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones SCID , Técnicas de Sonda Molecular , Ácidos Nucleicos de Péptidos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
9.
Res Pract Thromb Haemost ; 5(5): e12530, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34263099

RESUMEN

BACKGROUND: Traumatic injury and the associated acute bleeding are leading causes of death in people aged 1 to 44 years. Acute bleeding in pathological and surgical settings also represents a significant burden to the society. Yet there are no approved hemostatic drugs currently available. While clinically proven as an effective pro-coagulant, activated factor VII (FVIIa) use in acute bleeding has been hampered by unwanted thromboembolic events. Enhancing the ability of FVIIa to quickly stop a bleed and clear rapidly from circulation may yield an ideal molecule suitable for use in patients with acute bleeding. OBJECTIVES: To address this need and the current liability of FVIIa, we produced a novel FVIIa molecule (CT-001) with enhanced potency and shortened plasma residence time by cell line engineering and FVIIa protein engineering for superior efficacy for acute bleeding and safety. METHODS: To address safety, CT-001, a FVIIa protein with 4 desialylated N-glycans was generated to promote active recognition and clearance via the asialoglycoprotein receptor. To enhance potency, the gamma-carboxylated domain was modified with P10Q and K32E, which enhanced membrane binding. RESULTS: Together, these changes significantly enhanced potency and clearance while retaining the ability to interact with the key hemostatic checkpoint proteins antithrombin and tissue factor pathway inhibitor. CONCLUSIONS: These results demonstrate that a FVIIa molecule engineered to combine supra-physiological activity and shorter duration of action has the potential to overcome the current limitations of recombinant FVIIa to be a safe and effective approach to the treatment of acute bleeding.

10.
J Virol ; 95(13): e0223220, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33827954

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


Asunto(s)
COVID-19/transmisión , Modelos Animales de Enfermedad , Reinfección/prevención & control , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Hurones , Inyecciones Intramusculares , Nariz/virología , Reinfección/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Carga Viral
11.
Elife ; 92020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258450

RESUMEN

A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens.


Antibiotics are essential for treating infections. But their use can inadvertently lead to the emergence of antibiotic-resistant bacteria that do not respond to antibiotic drugs, making infections with these bacteria difficult or impossible to treat. Finding ways to prevent antibiotic resistance is critical to preserving the effectiveness of antibiotics. Many bacteria that cause infections in hospitals live in the intestines, where they are harmless. But these bacteria can cause life-threatening infections when they get into the bloodstream. When patients with bloodstream infections receive antibiotics, the bacteria in their intestines are also exposed to the drugs. This can kill off all antibiotic-susceptible bacteria, leaving behind only bacteria that have mutations that allow them to survive the drugs. These drug-resistant bacteria can then spread to other patients causing hard-to-treat infections. To stop this cycle of antibiotic treatment and antibiotic resistance, Morley et al. tested whether giving a drug called cholestyramine with intravenous antibiotics could protect the gut bacteria. In the experiments, mice were treated systemically with an antibiotic called daptomycin, which caused the growth of daptomycin-resistant strains of bacteria in the mice's intestines. In the laboratory, Morley et al. discovered that cholestyramine can inactivate daptomycin. Giving the mice cholestyramine and daptomycin together prevented the growth of antibiotic-resistant bacteria in the mice's intestines. Moreover, cholestyramine is taken orally and is not absorbed into the blood. It therefore only inactivates the antibiotic in the gut, but not in the blood. The experiments provide preliminary evidence that giving cholestyramine with antibiotics might help prevent the spread of drug resistance. Cholestyramine is already used to lower cholesterol levels in people. More studies are needed to determine if cholestyramine can protect gut bacteria and prevent antibiotic resistance in people.


Asunto(s)
Antibacterianos/uso terapéutico , Resina de Colestiramina/uso terapéutico , Daptomicina/antagonistas & inhibidores , Daptomicina/uso terapéutico , Farmacorresistencia Bacteriana , Enterococcus faecium/efectos de los fármacos , Animales , Antibacterianos/farmacología , Quimioterapia Adyuvante , Resina de Colestiramina/farmacología , Daptomicina/farmacología , Interacciones Farmacológicas , Femenino , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/prevención & control , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/prevención & control , Ratones , Ratones Endogámicos C57BL
12.
Evol Med Public Health ; 2020(1): 196-210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33209305

RESUMEN

BACKGROUND AND OBJECTIVES: There is a significant interest in identifying clinically effective drug treatment regimens that minimize the de novo evolution of antimicrobial resistance in pathogen populations. However, in vivo studies that vary treatment regimens and directly measure drug resistance evolution are rare. Here, we experimentally investigate the role of drug dose and treatment timing on resistance evolution in an animal model. METHODOLOGY: In a series of experiments, we measured the emergence of atovaquone-resistant mutants of Plasmodium chabaudi in laboratory mice, as a function of dose or timing of treatment (day post-infection) with the antimalarial drug atovaquone. RESULTS: The likelihood of high-level resistance emergence increased with atovaquone dose. When varying the timing of treatment, treating either very early or late in infection reduced the risk of resistance. When we varied starting inoculum, resistance was more likely at intermediate inoculum sizes, which correlated with the largest population sizes at time of treatment. CONCLUSIONS AND IMPLICATIONS: (i) Higher doses do not always minimize resistance emergence and can promote the emergence of high-level resistance. (ii) Altering treatment timing affects the risk of resistance emergence, likely due to the size of the population at the time of treatment, although we did not test the effect of immunity whose influence may have been important in the case of late treatment. (iii) Finding the 'right' dose and 'right' time to maximize clinical gains and limit resistance emergence can vary depending on biological context and was non-trivial even in our simplified experiments. LAY SUMMARY: In a mouse model of malaria, higher drug doses led to increases in drug resistance. The timing of drug treatment also impacted resistance emergence, likely due to the size of the population at the time of treatment.

13.
Nat Commun ; 11(1): 2992, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532974

RESUMEN

Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Based on the hypothesis that specific inhibition of APC's anticoagulant but not its cytoprotective activity can be beneficial for hemophilia therapy, 2 types of inhibitory monoclonal antibodies (mAbs) are tested: A type I active-site binding mAb and a type II mAb binding to an exosite on APC (required for anticoagulant activity) as shown by X-ray crystallography. Both mAbs increase thrombin generation and promote plasma clotting. Type I blocks all APC activities, whereas type II preserves APC's cytoprotective function. In normal monkeys, type I causes many adverse effects including animal death. In contrast, type II is well-tolerated in normal monkeys and shows both acute and prophylactic dose-dependent efficacy in hemophilic monkeys. Our data show that the type II mAb can specifically inhibit APC's anticoagulant function without compromising its cytoprotective function and offers superior therapeutic opportunities for hemophilia.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Hemofilia A/prevención & control , Fragmentos Fab de Inmunoglobulinas/inmunología , Inhibidor de Proteína C/farmacología , Proteína C/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/clasificación , Anticuerpos Monoclonales/inmunología , Tiempo de Sangría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Hemofilia A/sangre , Hemorragia/prevención & control , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Macaca fascicularis , Masculino , Proteína C/química , Proteína C/inmunología , Proteína C/metabolismo , Inhibidor de Proteína C/sangre , Inhibidor de Proteína C/farmacocinética
14.
Proc Natl Acad Sci U S A ; 116(44): 22386-22392, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31615885

RESUMEN

Hosts defend themselves against pathogens by mounting an immune response. Fully understanding the immune response as a driver of host disease and pathogen evolution requires a quantitative account of its impact on parasite population dynamics. Here, we use a data-driven modeling approach to quantify the birth and death processes underlying the dynamics of infections of the rodent malaria parasite, Plasmodium chabaudi, and the red blood cells (RBCs) it targets. We decompose the immune response into 3 components, each with a distinct effect on parasite and RBC vital rates, and quantify the relative contribution of each component to host disease and parasite density. Our analysis suggests that these components are deployed in a coordinated fashion to realize distinct resource-directed defense strategies that complement the killing of parasitized cells. Early in the infection, the host deploys a strategy reminiscent of siege and scorched-earth tactics, in which it both destroys RBCs and restricts their supply. Late in the infection, a "juvenilization" strategy, in which turnover of RBCs is accelerated, allows the host to recover from anemia while holding parasite proliferation at bay. By quantifying the impact of immunity on both parasite fitness and host disease, we reveal that phenomena often interpreted as immunopathology may in fact be beneficial to the host. Finally, we show that, across mice, the components of the host response are consistently related to each other, even when infections take qualitatively different trajectories. This suggests the existence of simple rules that govern the immune system's deployment.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Malaria/inmunología , Plasmodium chabaudi/patogenicidad , Reticulocitos/parasitología , Animales , Longevidad , Merozoítos/fisiología , Ratones , Modelos Teóricos , Plasmodium chabaudi/inmunología , Reticulocitos/inmunología
15.
Exp Hematol ; 60: 73-82.e3, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29337222

RESUMEN

Vaso-occlusive crisis (VOC) is the most common and debilitating complication of sickle cell disease (SCD); recurrent episodes cause organ damage and contribute to early mortality. Plasma placental growth factor (PlGF) levels are elevated in SCD and can further increase under hypoxic conditions in SCD mice. Treatment with a PlGF-neutralizing antibody (anti-PlGF Ab) in SCD mice reduced levels of monocyte chemoattractant protein-3, eotaxin, macrophage colony-stimulating factor, and plasminogen activator inhibitor-1 significantly, and of macrophage-derived chemokine and macrophage inflammatory protein-3ß moderately; this may contribute to inhibition of leukocyte recruitment, activation, and thrombosis. In subsequent experiments, anti-PlGF Ab treatment significantly reduced plasma lactate dehydrogenase levels, indicating possible reduction in cellular destruction and/or hemolysis. Histopathology studies revealed decreased incidence and severity of congestion in the lungs and spleen with repeated anti-PlGF Ab treatment. Furthermore, anti-PlGF Ab significantly reduced vaso-occlusion events under hypoxic conditions in a modified dorsal skinfold chamber model in SCD mice. Therefore, elevated PlGF levels may contribute to recruitment and activation of leukocytes. This can subsequently lead to increased pathology of affected organs in addition to mediating acute hypoxia/reoxygenation-triggered vaso-occlusion under SCD conditions. Thus, targeting PlGF may offer a therapeutic approach to reduce acute VOC and possibly alleviate long-term vascular complications in patients with SCD.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Anticuerpos Neutralizantes/farmacología , Proteínas/antagonistas & inhibidores , Enfermedades Vasculares/tratamiento farmacológico , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/complicaciones , Animales , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana , Ratones , Proteínas/metabolismo , Enfermedades Vasculares/sangre , Enfermedades Vasculares/etiología
16.
Proc Natl Acad Sci U S A ; 114(52): 13774-13779, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29233945

RESUMEN

Slowing the evolution of antimicrobial resistance is essential if we are to continue to successfully treat infectious diseases. Whether a drug-resistant mutant grows to high densities, and so sickens the patient and spreads to new hosts, is determined by the competitive interactions it has with drug-susceptible pathogens within the host. Competitive interactions thus represent a good target for resistance management strategies. Using an in vivo model of malaria infection, we show that limiting a resource that is disproportionately required by resistant parasites retards the evolution of drug resistance by intensifying competitive interactions between susceptible and resistant parasites. Resource limitation prevented resistance emergence regardless of whether resistant mutants arose de novo or were experimentally added before drug treatment. Our work provides proof of principle that chemotherapy paired with an "ecological" intervention can slow the evolution of resistance to antimicrobial drugs, even when resistant pathogens are present at high frequencies. It also suggests that a broad range of previously untapped compounds could be used for treating infectious diseases.


Asunto(s)
Resistencia a Medicamentos , Interacciones Huésped-Parásitos , Malaria , Modelos Biológicos , Mutación , Plasmodium chabaudi/fisiología , Malaria/tratamiento farmacológico , Malaria/genética , Malaria/metabolismo
17.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768866

RESUMEN

The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined.IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution.


Asunto(s)
Genoma Viral , Mutación , Myxoma virus/genética , Myxoma virus/patogenicidad , Genética Inversa , Factores de Virulencia/genética , Animales , Australia , Evolución Molecular , Técnicas de Inactivación de Genes , Genómica , Myxoma virus/clasificación , Myxoma virus/aislamiento & purificación , Filogenia , Conejos , Virulencia
18.
Proc Natl Acad Sci U S A ; 114(35): 9397-9402, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808019

RESUMEN

In host-pathogen arms races, increases in host resistance prompt counteradaptation by pathogens, but the nature of that counteradaptation is seldom directly observed outside of laboratory models. The best-documented field example is the coevolution of myxoma virus (MYXV) in European rabbits. To understand how MYXV in Australia has continued to evolve in wild rabbits under intense selection for genetic resistance to myxomatosis, we compared the phenotypes of the progenitor MYXV and viral isolates from the 1950s and the 1990s in laboratory rabbits with no resistance. Strikingly, and unlike their 1950s counterparts, most virus isolates from the 1990s induced a highly lethal immune collapse syndrome similar to septic shock. Thus, the next step in this canonical case of coevolution after a species jump has been further escalation by the virus in the face of widespread host resistance.


Asunto(s)
Myxoma virus/genética , Infecciones por Poxviridae/veterinaria , Conejos/virología , Infecciones Tumorales por Virus/veterinaria , Animales , Australia/epidemiología , Evolución Biológica , Myxoma virus/patogenicidad , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/patología , Factores de Tiempo , Infecciones Tumorales por Virus/epidemiología , Infecciones Tumorales por Virus/patología , Virulencia
19.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747479

RESUMEN

Hosts are often infected with multiple strains of a single parasite species. Within-host competition between parasite strains can be intense and has implications for the evolution of traits that impact patient health, such as drug resistance and virulence. Yet the mechanistic basis of within-host competition is poorly understood. Here, we demonstrate that a parasite nutrient, para-aminobenzoic acid (pABA), mediates competition between a drug resistant and drug susceptible strain of the malaria parasite, Plasmodium chabaudi We further show that increasing pABA supply to hosts infected with the resistant strain worsens disease and changes the relationship between parasite burden and pathology. Our experiments demonstrate that, even when there is profound top-down regulation (immunity), bottom-up regulation of pathogen populations can occur and that its importance may vary during an infection. The identification of resources that can be experimentally controlled opens up the opportunity to manipulate competitive interactions between parasites and hence their evolution.


Asunto(s)
Ácido 4-Aminobenzoico/farmacología , Interacciones Huésped-Parásitos , Malaria/patología , Plasmodium chabaudi/efectos de los fármacos , Animales , Coinfección/parasitología , Resistencia a Medicamentos , Femenino , Ratones Endogámicos C57BL , Carga de Parásitos , Virulencia
20.
Sci Rep ; 7: 43652, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272506

RESUMEN

One of the largest single sources of epilepsy in the world is produced as a neurological sequela in survivors of cerebral malaria. Nevertheless, the pathophysiological mechanisms of such epileptogenesis remain unknown and no adjunctive therapy during cerebral malaria has been shown to reduce the rate of subsequent epilepsy. There is no existing animal model of postmalarial epilepsy. In this technical report we demonstrate the first such animal models. These models were created from multiple mouse and parasite strain combinations, so that the epilepsy observed retained universality with respect to genetic background. We also discovered spontaneous sudden unexpected death in epilepsy (SUDEP) in two of our strain combinations. These models offer a platform to enable new preclinical research into mechanisms and prevention of epilepsy and SUDEP.


Asunto(s)
Muerte Súbita/etiología , Epilepsia/complicaciones , Epilepsia/etiología , Malaria Cerebral/complicaciones , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/mortalidad , Malaria Cerebral/parasitología , Malaria Cerebral/patología , Masculino , Ratones , Plasmodium berghei , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA